-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathnet_training.py
223 lines (207 loc) · 8.32 KB
/
net_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import numpy as np
import time
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.constraints import maxnorm
from keras.optimizers import SGD
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
from arch_generator import arch_generator
import sys
import copy
from datetime import datetime
import collections
import json
import operator
import os
from keras.layers.normalization import BatchNormalization
from keras.layers import Activation
class train_net:
best_trace = collections.OrderedDict()
acc_trace = collections.OrderedDict()
traing_mem = collections.OrderedDict()
training_trace = collections.OrderedDict()
target_str = None
best_accuracy = 0
x_train = []
y_train = []
x_test = []
y_test = []
sgd = None
counter = 0
num_classes = 0
ag = arch_generator()
def print_best_traces(self):
print("%"*20)
print("=====> best accuracy so far:", self.best_accuracy)
sorted_best_traces = sorted(self.best_trace.items(), key=operator.itemgetter(1))
for item in sorted_best_traces:
print(item[0],"==>", item[1])
for item in sorted_best_traces:
print(item[1])
print("%"*20)
def __init__(self):
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
self.x_train = x_train / 255.0 #normalize
self.x_test = x_test / 255.0 #normalize
self.y_train = np_utils.to_categorical( y_train )
self.y_test = np_utils.to_categorical( y_test )
self.num_classes = self.y_test.shape[1]
# 7 nodes
t_adj_mat = [[0, 1, 1, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0]]
t_node_list = ['input', 'conv1x1-bn-relu', 'conv3x3-bn-relu', 'maxpool3x3', 'conv3x3-bn-relu', 'conv3x3-bn-relu', 'output']
# 6 nodes
# t_adj_mat = [[0, 1, 1, 1, 1, 1],
# [0, 0, 0, 0, 1, 0],
# [0, 0, 0, 1, 0, 0],
# [0, 0, 0, 0, 1, 0],
# [0, 0, 0, 0, 0, 1],
# [0, 0, 0, 0, 0, 0]]
# t_node_list = ['input', 'conv3x3-bn-relu', 'conv3x3-bn-relu', 'conv3x3-bn-relu', 'conv3x3-bn-relu', 'output']
#5 nodes
# t_adj_mat = [[0, 1, 1, 1, 1],
# [0, 0, 1, 1, 0],
# [0, 0, 0, 1, 0],
# [0, 0, 0, 0, 1],
# [0, 0, 0, 0, 0]]
# t_node_list = ['input', 'conv1x1-bn-relu', 'conv3x3-bn-relu', 'conv3x3-bn-relu', 'output']
#4 nodes
# t_adj_mat = [[0, 1, 0, 1],
# [0, 0, 1, 0],
# [0, 0, 0, 1],
# [0, 0, 0, 0]]
# t_node_list = ['input', 'conv3x3-bn-relu', 'conv1x1-bn-relu', 'output']
#3 nodes
# t_adj_mat = [[0, 1, 1], [0, 0, 1], [0, 0, 0]]
# t_node_list = ['input', 'conv3x3-bn-relu', 'output']
target = collections.OrderedDict( {"adj_mat": t_adj_mat, "node_list":t_node_list } )
self.target_str = json.dumps( target, sort_keys = True )
def check_between_conv_layers( self, layers ):
#between two conv, no more than 1 pool, 1 act and 1 norm
counter = {}
counter['conv'] = 0
counter['pool'] = 0
counter['norm'] = 0
counter['act'] = 0
curt_conv_layer_id = 0 # assume the first layer is conv
for i in range( 1, len(layers) ):
next_conv_layer = i
while i < len(layers) and layers[i]['type'] != 'conv':
counter[ layers[i]['type'] ] += 1
i = i+1
if counter['norm'] > 1 or counter['act'] > 1 or counter['pool'] > 1:
return False
counter['conv'] = 0
counter['pool'] = 0
counter['norm'] = 0
counter['act'] = 0
return True
def duplication_check( self, layers ):
# only allows two conv layer to be adjacent
# conv, pool, norm, act
for i in range(1, len(layers)):
if layers[i-1]['type'] == layers[i]['type'] and layers[i]['type'] != 'conv':
return False
return True
def design_check(self, layers):
#True: pass the design check
#False: fail the design check
#guarantee conv to be the first
if layers[0]['type'] != 'conv':
return False
if self.duplication_check( layers ) == False:
return False
if self.check_between_conv_layers( layers ) == False:
return False
return True
def model_check(self, model):
layers = model.layers
for l in layers:
params_count = l.count_params()
if params_count > 400000:
return False
return True
def state_to_model(self, state):
model = Sequential()
layers = [None] * len(state)
for layer in state: #ensure the order
layer_id = layer['id']
layers[layer_id] = layer
print("##prepare to train=>")
for l in layers:
print(l)
if self.design_check(layers) == False:
print("design failed checking")
return None
for i in range(0, len(state)):
try:
layer = layers[i]
layer_id = layer['id']
layer_type = layer['type']
layer_model = None
if layer_type == 'conv':
if layer_id == 0:
layer_model = self.ag.decode_conv_layer( layer, (3, 32, 32) )
#this is force to have conv->act->bn blocks
else:
layer_model = self.ag.decode_conv_layer( layer )
elif layer_type == 'pool':
layer_model = self.ag.decode_pool_layer( layer )
elif layer_type == 'act':
layer_model = self.ag.decode_act_layer( layer )
elif layer_type == 'norm':
layer_model = self.ag.decode_norm_layer( layer )
model.add( layer_model )
#TODO only convolution layer
model.add( Activation('relu') )
model.add( BatchNormalization() )
except Exception as e:
print(e)
os._exit(0)
return None
model.add(Flatten())
model.add( Dense(self.num_classes, activation='softmax', use_bias = True) )
print(model.summary())
# if self.model_check(model) == False:
# print("model failed checking")
# return None
return model
def train_net(self, network):
#this state has been cleaned from term
network_str = json.dumps( network, sort_keys = True )
assert network_str in self.traing_mem
is_found = False
acc = self.traing_mem[network_str]
if network_str not in self.training_trace:
self.training_trace[network_str] = acc
self.counter += 1
if acc > self.best_accuracy:
print("@@@update best state:", network)
print("@@@update best acc:", acc)
self.best_accuracy = acc
item = [acc, self.counter]
self.best_trace[network_str] = item
print("target str:", self.target_str)
if self.counter % 1000 == 0:
sorted_best_traces = sorted(self.best_trace.items(), key=operator.itemgetter(1))
final_results = []
for item in sorted_best_traces:
final_results.append( item[1] )
final_results_str = json.dumps(final_results)
filename = "results/result_"+str(self.counter)
with open(filename, "a") as f:
f.write(final_results_str + '\n')
return acc, is_found