-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbib.bib
175 lines (162 loc) · 11.4 KB
/
bib.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
@article{clementini_modelling_1994,
title = {Modelling topological spatial relations: {Strategies} for query processing},
volume = {18},
issn = {00978493},
shorttitle = {Modelling topological spatial relations},
url = {https://linkinghub.elsevier.com/retrieve/pii/0097849394900078},
doi = {10.1016/0097-8493(94)90007-8},
language = {en},
number = {6},
urldate = {2019-04-10},
journal = {Computers \& Graphics},
author = {Clementini, Eliseo and Sharma, Jayant and Egenhofer, Max J.},
month = nov,
year = {1994},
pages = {815--822}
}
@article{unold_academic_2019,
title = {Academic {Meta} {Tool}. {Ein} {Web}-{Tool} zur {Modellierung} von {Vagheit}},
volume = {Mainz] Hg. von Andreas Kuczera / Thorsten Wübbena / Thomas Kollatz. Wolfenbüttel 2019. (= Zeitschrift für digitale Geisteswissenschaften / Sonderbände},
copyright = {CC BY-SA 4.0},
url = {http://www.zfdg.de/sb004_004},
doi = {10.17175/sb004_004},
abstract = {In diesem Artikel stellen wir eine Methodik zur Modellierung von Vagheit in Graphen vor. Neben der Modellierung behandeln wir auch die automatisierte Generierung von implizit gespeichertem Wissen unter Berücksichtigung von Vagheit. Diese wendet Verfahren aus dem Gebiet der Beschreibungslogik auf graphbasierte Daten an. Ebenfalls präsentieren wir in diesem Artikel unsere Softwareentwicklungen, welche die beschriebene Methodik umsetzen und zeigen deren Nutzen anhand von drei Fallbeispielen in den Geistes- und Kulturwissenschaften auf.},
urldate = {2019-04-10},
journal = {Die Modellierung des Zweifels – Schlüsselideen und -konzepte zur graphbasierten Modellierung von Unsicherheiten. [Ausgewählte Beiträge der Tagung 19.-20.01.2018 an der Akademie der Wissenschaften und der Literatur},
author = {Unold, Martin and Thiery, Florian and Mees, Allard},
collaborator = {Kuczera, Andreas and Wübbena, Thorsten and Kollatz, Thomas},
year = {2019},
pages = {4)},
annote = {SeriesInformation
Die Modellierung des Zweifels – Schlüsselideen und -konzepte zur graphbasierten Modellierung von Unsicherheiten. [Ausgewählte Beiträge der Tagung 19.-20.01.2018 an der Akademie der Wissenschaften und der Literatur, Mainz] Hg. von Andreas Kuczera / Thorsten Wübbena / Thomas Kollatz. Wolfenbüttel 2019. (= Zeitschrift für digitale Geisteswissenschaften / Sonderbände, 4)}
}
@book{hart_linked_2013,
title = {Linked {Data}: {A} {Geographic} {Perspective}},
isbn = {978-1-4398-6995-6 978-1-4398-6997-0},
shorttitle = {Linked {Data}},
url = {https://www.taylorfrancis.com/books/9781439869970},
language = {en},
urldate = {2019-04-10},
publisher = {CRC Press},
author = {Hart, Glen and Dolbear, Catherine},
month = jan,
year = {2013},
doi = {10.1201/b13877}
}
@article{shadbolt_linked_2012,
title = {Linked {Open} {Government} {Data}: {Lessons} from {Data}.gov.uk},
volume = {27},
issn = {1541-1672},
shorttitle = {Linked {Open} {Government} {Data}},
url = {http://ieeexplore.ieee.org/document/6171150/},
doi = {10.1109/MIS.2012.23},
language = {en},
number = {3},
urldate = {2019-04-10},
journal = {IEEE Intelligent Systems},
author = {Shadbolt, Nigel and O'Hara, Kieron and Berners-Lee, Tim and Gibbins, Nicholas and Glaser, Hugh and Hall, Wendy and schraefel, m.c.},
month = may,
year = {2012},
pages = {16--24},
file = {Shadbolt et al. - 2012 - Linked Open Government Data Lessons from Data.gov.pdf:C\:\\Users\\thiery.RGZM\\Zotero\\storage\\HISNGFGR\\Shadbolt et al. - 2012 - Linked Open Government Data Lessons from Data.gov.pdf:application/pdf}
}
@article{battle_geosparql_2011,
title = {{GeoSPARQL}: {Enabling} a {Geospatial} {Semantic} {Web}},
abstract = {As the amount of Linked Open Data on the web increases, so does the amount of data with an inherent spatial context. Without spatial reasoning, however, the value of this spatial context is limited. Over the past decade there have been several vocabularies and query languages that attempt to exploit this knowledge and enable spatial reasoning. These attempts provide varying levels of support for fundamental geospatial concepts. In this paper, we look at the overall state of geospatial data in the Semantic Web, with a focus on the upcoming OGC standard GeoSPARQL. GeoSPARQL attempts to unify data access for the geospatial Semantic Web. We first describe the motivation for GeoSPARQL, then the current state of the art in industry and research, followed by an example use case, and the implementation of GeoSPARQL in the Parliament triple store.},
language = {en},
author = {Battle, Robert and Kolas, Dave},
year = {2011},
pages = {17},
file = {Battle und Kolas - GeoSPARQL Enabling a Geospatial Semantic Web.pdf:C\:\\Users\\thiery.RGZM\\Zotero\\storage\\PPNBBJB7\\Battle und Kolas - GeoSPARQL Enabling a Geospatial Semantic Web.pdf:application/pdf}
}
@article{auer_linkedgeodata_2009,
title = {{LinkedGeoData} – {Collaboratively} {Created} {Geo}-{Information} for the {Semantic} {Web}},
abstract = {In this Semantic Web Challenge submission we present LinkedGeoData, a project which transforms data collected by the OpenStreetMap project into RDF, enriches this data with a light-weight ontology, establishes links to other entities on the Data Web and provides a browser for exploration and authoring of the rich spatial data collection. The amount of data contributed by LinkedGeoData to the Data Web reaches more than 3 billion RDF triples. It contains descriptions of entities with a spatial location such as roads, buildings, shops, pubs, mailboxes. Most of these entities were previously not available on the Data Web. For the ones available, we applied automatic interlinking techniques to DBpedia and thus other LOD datasets with a spatial dimension. In order to explore this wealth of information we implemented a tool, which combines the faceted-browsing approach with a spatial dimension and employs sophisticated data aggregation techniques to facilitate the smooth browsing of this enormous data source.},
language = {en},
author = {Auer, Soren and Lehmann, Jens},
year = {2009},
pages = {8},
file = {Auer und Lehmann - LinkedGeoData – Collaboratively Created Geo-Inform.pdf:C\:\\Users\\thiery.RGZM\\Zotero\\storage\\NRZSE5UT\\Auer und Lehmann - LinkedGeoData – Collaboratively Created Geo-Inform.pdf:application/pdf}
}
@article{mark_modeling_1994,
title = {Modeling {Spatial} {Relations} {Between} {Lines} and {Regions}: {Combining} {Formal} {Mathematical} {Models} and {Human} {Subjects} {Testing}},
abstract = {This paper describes the results of a series of human-subjects experiments to test how people think about spatial relations between lines and regions. The experiments are centered on a formal model of topological spatial relations, called the 9-intersection. For unbranched lines and simplyconnected regions, this model identifies 19 different spatial relations. Subjects were presented with two or three geometrically-distinct drawings of each spatial relation (40 drawings in all), with the line and the region said to be a road and a park, respectively. In the first experiment, the task was to group the drawings so that the same phrase or sentence could be used to describe every situation in each group. A few subjects differentiated all 19 relations, but most identified 9 to 13 groups. Although there was a great deal of variation across subjects in the groups that were identified, the results confirm that the relations grouped by the 9-intersection model are the ones most often grouped by the subjects. No consistent language-related differences were identified among 12 English-speaking subjects, 12 Chinesespeaking subjects, and 4 other subjects tested in their own native languages. A second experiment presented the subjects with a short sentence describing a spatial relation between a road and a park, and the same 40 diagrams. Each subject was asked to rate the strength of their agreement or disagreement that the sentence described each relation. For each of the two different predicates tested—“the road crosses the park” and “the road goes into the park”—there was a great deal of consensus across the subjects. The results of these experiments suggest that the 9-intersection model forms a sound basis for characterizing line-region relations in the case of roads and parks, and that many spatial relations can be well-represented by particular subsets of the primitives differentiated by the 9-intersection.},
language = {en},
author = {Mark, David M and Egenhofer, Max J},
month = oct,
year = {1994},
pages = {41},
file = {Mark und Egenhofer - Modeling Spatial Relations Between Lines and Regio.pdf:C\:\\Users\\thiery.RGZM\\Zotero\\storage\\6ZNMXH26\\Mark und Egenhofer - Modeling Spatial Relations Between Lines and Regio.pdf:application/pdf}
}
@misc{tim_linked_2006,
title = {Linked {Data} - {Design} {Issues}},
shorttitle = {Linked {Data}},
url = {https://www.w3.org/DesignIssues/LinkedData.html},
urldate = {2019-04-10},
author = {Berners-Lee,Tim},
month = jul,
year = {2006},
file = {Linked Data - Design Issues:C\:\\Users\\thiery.RGZM\\Zotero\\storage\\T8HZUNBA\\LinkedData.html:text/html}
}
@misc{thiery_zenodo_1,
title = {Academic {Meta} {Tool} {Example} {Ontology} - {Northern} and {Southern} {Places}},
copyright = {Open Data Commons Attribution License v1.0, Open Access},
url = {https://zenodo.org/record/2633148},
abstract = {Academic Meta Tool Example Ontology - Northern and Southern Places},
urldate = {2019-04-10},
publisher = {Zenodo},
author = {Thiery, Florian},
month = jan,
year = {2018},
doi = {10.5281/zenodo.2633148},
note = {type: dataset}
}
@misc{thiery_zenodo_2,
title = {Academic {Meta} {Tool} {Example} {Ontology} - {Topi} {Ontology} (small)},
copyright = {Open Data Commons Attribution License v1.0, Open Access},
url = {https://zenodo.org/record/2635107},
abstract = {Academic Meta Tool Example Ontology - Topi Ontology (small)},
urldate = {2019-04-10},
publisher = {Zenodo},
author = {Thiery, Florian},
month = apr,
year = {2019},
doi = {10.5281/zenodo.2635107},
note = {type: dataset}
}
@misc{thiery_zenodo_3,
title = {Academic {Meta} {Tool} - {Amt}.{Js}},
copyright = {Creative Commons Attribution 4.0, Open Access},
url = {https://zenodo.org/record/1342310},
abstract = {Academic Meta Tool - amt.js},
urldate = {2019-04-10},
publisher = {Zenodo},
author = {Unold, Martin and Thiery, Florian},
month = jan,
year = {2018},
doi = {10.5281/zenodo.1342310}
}
@misc{thiery_zenodo_4,
title = {topi.link: {The} {Northern} and {Southern} {Ontology}},
copyright = {Creative Commons Attribution 4.0 International, Open Access},
url = {https://zenodo.org/record/2635490},
abstract = {The Linked Geodesy Research Project topi.link combines geodesy and Linked Data research questions. Using the Academic{\textless}br{\textgreater}
Meta Tool (AMT), we have a little minion, which addresses the task of inferencing vague graph data. topi.link will give{\textless}br{\textgreater}
access to the AMT world using toponyms as a graph-based vague topology for these toponyms. This paper demonstrates a{\textless}br{\textgreater}
very simple example how to model a north/south ontology using AMT.},
urldate = {2019-04-10},
publisher = {Zenodo},
author = {A. Thiery},
month = apr,
year = {2019},
doi = {10.5281/zenodo.2635490}
}
@misc{thiery_topilink_2019,
title = {topi.link},
url = {http://topi.link/},
urldate = {2019-04-10},
author = {Thiery, Florian},
month = apr,
year = {2019},
file = {Academic Meta Tool:C\:\\Users\\thiery.RGZM\\Zotero\\storage\\VJWBW2V8\\topi.link.html:text/html}
}