forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels_test.py
324 lines (290 loc) · 11.6 KB
/
models_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for nlp.nhnet.models."""
import os
from absl import logging
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
# pylint: disable=g-direct-tensorflow-import
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
# pylint: enable=g-direct-tensorflow-import
from official.nlp.nhnet import configs
from official.nlp.nhnet import models
from official.nlp.nhnet import utils
def all_strategy_combinations():
return combinations.combine(
distribution=[
strategy_combinations.default_strategy,
strategy_combinations.tpu_strategy,
strategy_combinations.one_device_strategy_gpu,
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
strategy_combinations.mirrored_strategy_with_two_gpus,
],
mode="eager",
)
def distribution_forward_path(strategy,
model,
inputs,
batch_size,
mode="train"):
dataset = tf.data.Dataset.from_tensor_slices((inputs))
dataset = dataset.batch(batch_size)
dataset = strategy.experimental_distribute_dataset(dataset)
@tf.function
def test_step(inputs):
"""Calculates evaluation metrics on distributed devices."""
def _test_step_fn(inputs):
"""Replicated accuracy calculation."""
return model(inputs, mode=mode, training=False)
outputs = strategy.run(_test_step_fn, args=(inputs,))
return tf.nest.map_structure(strategy.experimental_local_results, outputs)
return [test_step(inputs) for inputs in dataset]
def process_decoded_ids(predictions, end_token_id):
"""Transforms decoded tensors to lists ending with END_TOKEN_ID."""
if isinstance(predictions, tf.Tensor):
predictions = predictions.numpy()
flatten_ids = predictions.reshape((-1, predictions.shape[-1]))
results = []
for ids in flatten_ids:
ids = list(ids)
if end_token_id in ids:
ids = ids[:ids.index(end_token_id)]
results.append(ids)
return results
class Bert2BertTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(Bert2BertTest, self).setUp()
self._config = utils.get_test_params()
def test_model_creation(self):
model = models.create_bert2bert_model(params=self._config)
fake_ids = np.zeros((2, 10), dtype=np.int32)
fake_inputs = {
"input_ids": fake_ids,
"input_mask": fake_ids,
"segment_ids": fake_ids,
"target_ids": fake_ids,
}
model(fake_inputs)
@combinations.generate(all_strategy_combinations())
def test_bert2bert_train_forward(self, distribution):
seq_length = 10
# Defines the model inside distribution strategy scope.
with distribution.scope():
# Forward path.
batch_size = 2
batches = 4
fake_ids = np.zeros((batch_size * batches, seq_length), dtype=np.int32)
fake_inputs = {
"input_ids": fake_ids,
"input_mask": fake_ids,
"segment_ids": fake_ids,
"target_ids": fake_ids,
}
model = models.create_bert2bert_model(params=self._config)
results = distribution_forward_path(distribution, model, fake_inputs,
batch_size)
logging.info("Forward path results: %s", str(results))
self.assertLen(results, batches)
def test_bert2bert_decoding(self):
seq_length = 10
self._config.override(
{
"beam_size": 3,
"len_title": seq_length,
"alpha": 0.6,
},
is_strict=False)
batch_size = 2
fake_ids = np.zeros((batch_size, seq_length), dtype=np.int32)
fake_inputs = {
"input_ids": fake_ids,
"input_mask": fake_ids,
"segment_ids": fake_ids,
}
self._config.override({
"padded_decode": False,
"use_cache": False,
},
is_strict=False)
model = models.create_bert2bert_model(params=self._config)
ckpt = tf.train.Checkpoint(model=model)
# Initializes variables from checkpoint to keep outputs deterministic.
init_checkpoint = ckpt.save(os.path.join(self.get_temp_dir(), "ckpt"))
ckpt.restore(init_checkpoint).assert_existing_objects_matched()
top_ids, scores = model(fake_inputs, mode="predict")
self._config.override({
"padded_decode": False,
"use_cache": True,
},
is_strict=False)
model = models.create_bert2bert_model(params=self._config)
ckpt = tf.train.Checkpoint(model=model)
ckpt.restore(init_checkpoint).assert_existing_objects_matched()
cached_top_ids, cached_scores = model(fake_inputs, mode="predict")
self.assertEqual(
process_decoded_ids(top_ids, self._config.end_token_id),
process_decoded_ids(cached_top_ids, self._config.end_token_id))
self.assertAllClose(scores, cached_scores)
self._config.override({
"padded_decode": True,
"use_cache": True,
},
is_strict=False)
model = models.create_bert2bert_model(params=self._config)
ckpt = tf.train.Checkpoint(model=model)
ckpt.restore(init_checkpoint).assert_existing_objects_matched()
padded_top_ids, padded_scores = model(fake_inputs, mode="predict")
self.assertEqual(
process_decoded_ids(top_ids, self._config.end_token_id),
process_decoded_ids(padded_top_ids, self._config.end_token_id))
self.assertAllClose(scores, padded_scores)
@combinations.generate(all_strategy_combinations())
def test_bert2bert_eval(self, distribution):
seq_length = 10
padded_decode = isinstance(distribution,
tf.distribute.experimental.TPUStrategy)
self._config.override(
{
"beam_size": 3,
"len_title": seq_length,
"alpha": 0.6,
"padded_decode": padded_decode,
},
is_strict=False)
# Defines the model inside distribution strategy scope.
with distribution.scope():
# Forward path.
batch_size = 2
batches = 4
fake_ids = np.zeros((batch_size * batches, seq_length), dtype=np.int32)
fake_inputs = {
"input_ids": fake_ids,
"input_mask": fake_ids,
"segment_ids": fake_ids,
}
model = models.create_bert2bert_model(params=self._config)
results = distribution_forward_path(
distribution, model, fake_inputs, batch_size, mode="predict")
self.assertLen(results, batches)
results = distribution_forward_path(
distribution, model, fake_inputs, batch_size, mode="eval")
self.assertLen(results, batches)
class NHNetTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(NHNetTest, self).setUp()
self._nhnet_config = configs.NHNetConfig()
self._nhnet_config.override(utils.get_test_params().as_dict())
self._bert2bert_config = configs.BERT2BERTConfig()
self._bert2bert_config.override(utils.get_test_params().as_dict())
def _count_params(self, layer, trainable_only=True):
"""Returns the count of all model parameters, or just trainable ones."""
if not trainable_only:
return layer.count_params()
else:
return int(
np.sum([
tf.keras.backend.count_params(p) for p in layer.trainable_weights
]))
def test_create_nhnet_layers(self):
single_doc_bert, single_doc_decoder = models.get_bert2bert_layers(
self._bert2bert_config)
multi_doc_bert, multi_doc_decoder = models.get_nhnet_layers(
self._nhnet_config)
# Expects multi-doc encoder/decoder have the same number of parameters as
# single-doc encoder/decoder.
self.assertEqual(
self._count_params(multi_doc_bert), self._count_params(single_doc_bert))
self.assertEqual(
self._count_params(multi_doc_decoder),
self._count_params(single_doc_decoder))
def test_checkpoint_restore(self):
bert2bert_model = models.create_bert2bert_model(self._bert2bert_config)
ckpt = tf.train.Checkpoint(model=bert2bert_model)
init_checkpoint = ckpt.save(os.path.join(self.get_temp_dir(), "ckpt"))
nhnet_model = models.create_nhnet_model(
params=self._nhnet_config, init_checkpoint=init_checkpoint)
source_weights = (
bert2bert_model.bert_layer.trainable_weights +
bert2bert_model.decoder_layer.trainable_weights)
dest_weights = (
nhnet_model.bert_layer.trainable_weights +
nhnet_model.decoder_layer.trainable_weights)
for source_weight, dest_weight in zip(source_weights, dest_weights):
self.assertAllClose(source_weight.numpy(), dest_weight.numpy())
@combinations.generate(all_strategy_combinations())
def test_nhnet_train_forward(self, distribution):
seq_length = 10
# Defines the model inside distribution strategy scope.
with distribution.scope():
# Forward path.
batch_size = 2
num_docs = 2
batches = 4
fake_ids = np.zeros((batch_size * batches, num_docs, seq_length),
dtype=np.int32)
fake_inputs = {
"input_ids":
fake_ids,
"input_mask":
fake_ids,
"segment_ids":
fake_ids,
"target_ids":
np.zeros((batch_size * batches, seq_length * 2), dtype=np.int32),
}
model = models.create_nhnet_model(params=self._nhnet_config)
results = distribution_forward_path(distribution, model, fake_inputs,
batch_size)
logging.info("Forward path results: %s", str(results))
self.assertLen(results, batches)
@combinations.generate(all_strategy_combinations())
def test_nhnet_eval(self, distribution):
seq_length = 10
padded_decode = isinstance(distribution,
tf.distribute.experimental.TPUStrategy)
self._nhnet_config.override(
{
"beam_size": 4,
"len_title": seq_length,
"alpha": 0.6,
"multi_channel_cross_attention": True,
"padded_decode": padded_decode,
},
is_strict=False)
# Defines the model inside distribution strategy scope.
with distribution.scope():
# Forward path.
batch_size = 2
num_docs = 2
batches = 4
fake_ids = np.zeros((batch_size * batches, num_docs, seq_length),
dtype=np.int32)
fake_inputs = {
"input_ids": fake_ids,
"input_mask": fake_ids,
"segment_ids": fake_ids,
"target_ids": np.zeros((batch_size * batches, 5), dtype=np.int32),
}
model = models.create_nhnet_model(params=self._nhnet_config)
results = distribution_forward_path(
distribution, model, fake_inputs, batch_size, mode="predict")
self.assertLen(results, batches)
results = distribution_forward_path(
distribution, model, fake_inputs, batch_size, mode="eval")
self.assertLen(results, batches)
if __name__ == "__main__":
tf.test.main()