-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathint256.go
369 lines (320 loc) · 7.39 KB
/
int256.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
package int256
import (
"math/big"
"github.com/holiman/uint256"
)
var one = uint256.NewInt(1)
var maxUint256 = uint256.MustFromHex("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
type Int struct {
abs *uint256.Int
neg bool
}
// Sign returns:
//
// -1 if x < 0
// 0 if x == 0
// +1 if x > 0
func (z *Int) Sign() int {
if len(z.abs) == 0 {
return 0
}
if z.neg {
return -1
}
return 1
}
func New() *Int {
return &Int{
abs: new(uint256.Int),
}
}
// SetInt64 sets z to x and returns z.
func (z *Int) SetInt64(x int64) *Int {
neg := false
if x < 0 {
neg = true
x = -x
}
if z.abs == nil {
z.abs = new(uint256.Int)
}
z.abs = z.abs.SetUint64(uint64(x))
z.neg = neg
return z
}
// SetUint64 sets z to x and returns z.
func (z *Int) SetUint64(x uint64) *Int {
if z.abs == nil {
z.abs = new(uint256.Int)
}
z.abs = z.abs.SetUint64(x)
z.neg = false
return z
}
// NewInt allocates and returns a new Int set to x.
func NewInt(x int64) *Int {
return New().SetInt64(x)
}
// SetUint64 sets z to x and returns z.
func (z *Int) SetString(s string) (*Int, error) {
origin := s
neg := false
// Remove max one leading +
if len(s) > 0 && s[0] == '+' {
neg = false
s = s[1:]
}
if len(s) > 0 && s[0] == '-' {
neg = true
s = s[1:]
}
var (
abs *uint256.Int
err error
)
abs, err = uint256.FromDecimal(s)
if err != nil {
// TODO: parse base as input param
b, ok := new(big.Int).SetString(origin, 16)
if !ok {
return nil, err
}
return MustFromBig(b), nil
}
return &Int{
abs,
neg,
}, nil
}
// // setFromScanner implements SetString given an io.ByteScanner.
// // For documentation see comments of SetString.
// func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) {
// if _, _, err := z.scan(r, base); err != nil {
// return nil, false
// }
// // entire content must have been consumed
// if _, err := r.ReadByte(); err != io.EOF {
// return nil, false
// }
// return z, true // err == io.EOF => scan consumed all content of r
// }
func (z *Int) Add(x, y *Int) *Int {
z.initiateAbs()
neg := x.neg
if x.neg == y.neg {
// x + y == x + y
// (-x) + (-y) == -(x + y)
z.abs = z.abs.Add(x.abs, y.abs)
} else {
// x + (-y) == x - y == -(y - x)
// (-x) + y == y - x == -(x - y)
if x.abs.Cmp(y.abs) >= 0 {
z.abs = z.abs.Sub(x.abs, y.abs)
} else {
neg = !neg
z.abs = z.abs.Sub(y.abs, x.abs)
}
}
z.neg = neg // 0 has no sign
return z
}
// Sub sets z to the difference x-y and returns z.
func (z *Int) Sub(x, y *Int) *Int {
z.initiateAbs()
neg := x.neg
if x.neg != y.neg {
// x - (-y) == x + y
// (-x) - y == -(x + y)
z.abs = z.abs.Add(x.abs, y.abs)
} else {
// x - y == x - y == -(y - x)
// (-x) - (-y) == y - x == -(x - y)
if x.abs.Cmp(y.abs) >= 0 {
z.abs = z.abs.Sub(x.abs, y.abs)
} else {
neg = !neg
z.abs = z.abs.Sub(y.abs, x.abs)
}
}
z.neg = neg // 0 has no sign
return z
}
// Mul sets z to the product x*y and returns z.
func (z *Int) Mul(x, y *Int) *Int {
z.initiateAbs()
z.abs = z.abs.Mul(x.abs, y.abs)
z.neg = x.neg != y.neg // 0 has no sign
return z
}
// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
// It panics if x is negative.
func (z *Int) Sqrt(x *Int) *Int {
z.initiateAbs()
if x.neg {
panic("square root of negative number")
}
z.neg = false
z.abs = z.abs.Sqrt(x.abs)
return z
}
// Rsh sets z = x >> n and returns z.
func (z *Int) Rsh(x *Int, n uint) *Int {
z.initiateAbs()
if !x.neg {
z.abs.Rsh(x.abs, n)
z.neg = x.neg
return z
}
// TODO: implement
b := x.ToBig()
return MustFromBig(b.Rsh(b, n))
}
// Quo sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Quo implements truncated division (like Go); see QuoRem for more details.
func (z *Int) Quo(x, y *Int) *Int {
z.initiateAbs()
z.abs = z.abs.Div(x.abs, y.abs)
z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
return z
}
// Rem sets z to the remainder x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Rem implements truncated modulus (like Go); see QuoRem for more details.
func (z *Int) Rem(x, y *Int) *Int {
z.initiateAbs()
z.abs.Mod(x.abs, y.abs)
z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
return z
}
// Cmp compares x and y and returns:
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
func (z *Int) Cmp(x *Int) (r int) {
z.initiateAbs()
// x cmp y == x cmp y
// x cmp (-y) == x
// (-x) cmp y == y
// (-x) cmp (-y) == -(x cmp y)
switch {
case z == x:
// nothing to do
case z.neg == x.neg:
r = z.abs.Cmp(x.abs)
if z.neg {
r = -r
}
case z.abs.IsZero() && x.abs.IsZero():
r = 0
case z.neg:
r = -1
default:
r = 1
}
return
}
// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
// If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0,
// and x and m are not relatively prime, z is unchanged and nil is returned.
//
// Modular exponentiation of inputs of a particular size is not a
// cryptographically constant-time operation.
func (z *Int) Exp(x, y, m *Int) *Int {
z.initiateAbs()
if x == nil {
panic("x is nil")
}
if !x.neg && !y.neg && m == nil {
z.neg = false
z.abs.Exp(x.abs, y.abs)
return z
}
// TODO: implement
var mBigInt *big.Int
if m != nil {
mBigInt = m.ToBig()
}
big := new(big.Int).Exp(x.ToBig(), y.ToBig(), mBigInt)
z, _ = FromBig(big)
return z
}
func (z *Int) Div(x, y *Int) *Int {
z.initiateAbs()
z.abs.Div(x.abs, y.abs)
if x.neg == y.neg {
z.neg = false
} else {
z.neg = true
}
return z
}
// Lsh sets z = x << n and returns z.
func (z *Int) Lsh(x *Int, n uint) *Int {
z.initiateAbs()
b := new(big.Int).Lsh(x.abs.ToBig(), n)
z.abs = uint256.MustFromBig(b)
z.neg = x.neg
return z
}
// Or sets z = x | y and returns z.
func (z *Int) Or(x, y *Int) *Int {
z.initiateAbs()
if x.neg == y.neg {
if x.neg {
// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
x1 := new(uint256.Int).Sub(x.abs, one)
y1 := new(uint256.Int).Sub(y.abs, one)
z.abs = z.abs.Add(z.abs.And(x1, y1), one)
z.neg = true // z cannot be zero if x and y are negative
return z
}
// x | y == x | y
z.abs = z.abs.Or(x.abs, y.abs)
z.neg = false
return z
}
// x.neg != y.neg
if x.neg {
x, y = y, x // | is symmetric
}
// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
y1 := new(uint256.Int).Sub(y.abs, one)
z.abs = z.abs.Add(z.abs.And(y1, new(uint256.Int).Xor(x.abs, maxUint256)), one)
z.neg = true // z cannot be zero if one of x or y is negative
return z
}
// And sets z = x & y and returns z.
func (z *Int) And(x, y *Int) *Int {
z.initiateAbs()
if x.neg == y.neg {
if x.neg {
// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
x1 := new(uint256.Int).Sub(x.abs, one)
y1 := new(uint256.Int).Sub(y.abs, one)
z.abs = z.abs.Add(z.abs.Or(x1, y1), one)
z.neg = true // z cannot be zero if x and y are negative
return z
}
// x & y == x & y
z.abs = z.abs.And(x.abs, y.abs)
z.neg = false
return z
}
// x.neg != y.neg
if x.neg {
x, y = y, x // & is symmetric
}
// x & (-y) == x & ^(y-1) == x &^ (y-1)
y1 := new(uint256.Int).Sub(y.abs, one)
z.abs = z.abs.And(x.abs, new(uint256.Int).Xor(y1, maxUint256))
z.neg = false
return z
}
// initiateAbs sets default value for `z.abs` value if is nil
func (z *Int) initiateAbs() {
if z.abs == nil {
z.abs = new(uint256.Int)
}
}