forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.cpp
234 lines (205 loc) · 9.04 KB
/
demo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#include <chrono>
#include <fstream>
#include "config.h"
#include "cuda_utils.h"
#include "logging.h"
#include "model.h"
#include "postprocess.h"
#include "preprocess.h"
#include "utils.h"
using namespace nvinfer1;
const static int kOutputSize = kMaxNumOutputBbox * sizeof(Detection) / sizeof(float) + 1;
static Logger gLogger;
void serialize_engine(unsigned int max_batchsize, std::string& wts_name, std::string& sub_type,
std::string& engine_name) {
// Create builder
IBuilder* builder = createInferBuilder(gLogger);
IBuilderConfig* config = builder->createBuilderConfig();
// Create model to populate the network, then set the outputs and create an engine
IHostMemory* serialized_engine = nullptr;
if (sub_type == "t") {
serialized_engine = build_engine_yolov9_t(max_batchsize, builder, config, DataType::kFLOAT, wts_name, false);
} else if (sub_type == "s") {
serialized_engine = build_engine_yolov9_s(max_batchsize, builder, config, DataType::kFLOAT, wts_name, false);
} else if (sub_type == "m") {
serialized_engine = build_engine_yolov9_m(max_batchsize, builder, config, DataType::kFLOAT, wts_name, false);
} else if (sub_type == "c") {
serialized_engine = build_engine_yolov9_c(max_batchsize, builder, config, DataType::kFLOAT, wts_name);
} else if (sub_type == "e") {
serialized_engine = build_engine_yolov9_e(max_batchsize, builder, config, DataType::kFLOAT, wts_name);
}
else if (sub_type == "gt") {
serialized_engine = build_engine_yolov9_t(max_batchsize, builder, config, DataType::kFLOAT, wts_name, true);
} else if (sub_type == "gs") {
serialized_engine = build_engine_yolov9_s(max_batchsize, builder, config, DataType::kFLOAT, wts_name, true);
} else if (sub_type == "gm") {
serialized_engine = build_engine_yolov9_m(max_batchsize, builder, config, DataType::kFLOAT, wts_name, true);
} else if (sub_type == "gc") {
serialized_engine = build_engine_gelan_c(max_batchsize, builder, config, DataType::kFLOAT, wts_name);
} else if (sub_type == "ge") {
serialized_engine = build_engine_gelan_e(max_batchsize, builder, config, DataType::kFLOAT, wts_name);
} else {
return;
}
assert(serialized_engine != nullptr);
std::ofstream p(engine_name, std::ios::binary);
if (!p) {
std::cerr << "could not open plan output file" << std::endl;
assert(false);
}
p.write(reinterpret_cast<const char*>(serialized_engine->data()), serialized_engine->size());
delete config;
delete serialized_engine;
delete builder;
}
void deserialize_engine(std::string& engine_name, IRuntime** runtime, ICudaEngine** engine,
IExecutionContext** context) {
std::ifstream file(engine_name, std::ios::binary);
if (!file.good()) {
std::cerr << "read " << engine_name << " error!" << std::endl;
assert(false);
}
size_t size = 0;
file.seekg(0, file.end);
size = file.tellg();
file.seekg(0, file.beg);
char* serialized_engine = new char[size];
assert(serialized_engine);
file.read(serialized_engine, size);
file.close();
*runtime = createInferRuntime(gLogger);
assert(*runtime);
*engine = (*runtime)->deserializeCudaEngine(serialized_engine, size);
assert(*engine);
*context = (*engine)->createExecutionContext();
assert(*context);
delete[] serialized_engine;
}
void prepare_buffer(ICudaEngine* engine, float** input_buffer_device, float** output_buffer_device,
float** output_buffer_host) {
assert(engine->getNbBindings() == 2);
// In order to bind the buffers, we need to know the names of the input and output tensors.
// Note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine->getBindingIndex(kInputTensorName);
const int outputIndex = engine->getBindingIndex(kOutputTensorName);
assert(inputIndex == 0);
assert(outputIndex == 1);
// Create GPU buffers on device
CUDA_CHECK(cudaMalloc((void**)input_buffer_device, kBatchSize * 3 * kInputH * kInputW * sizeof(float)));
CUDA_CHECK(cudaMalloc((void**)output_buffer_device, kBatchSize * kOutputSize * sizeof(float)));
*output_buffer_host = new float[kBatchSize * kOutputSize];
}
void infer(IExecutionContext& context, cudaStream_t& stream, void** buffers, float* output, int batchSize) {
// infer on the batch asynchronously, and DMA output back to host
context.enqueue(batchSize, buffers, stream, nullptr);
CUDA_CHECK(cudaMemcpyAsync(output, buffers[1], batchSize * kOutputSize * sizeof(float), cudaMemcpyDeviceToHost,
stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
}
bool parse_args(int argc, char** argv, std::string& wts, std::string& engine, std::string& img_dir,
std::string& sub_type) {
if (argc < 4)
return false;
if (std::string(argv[1]) == "-s" && argc == 5) {
wts = std::string(argv[2]);
engine = std::string(argv[3]);
sub_type = std::string(argv[4]);
} else if (std::string(argv[1]) == "-d" && argc == 4) {
engine = std::string(argv[2]);
img_dir = std::string(argv[3]);
} else {
return false;
}
return true;
}
int main(int argc, char** argv) {
cudaSetDevice(kGpuId);
std::string wts_name = "";
std::string engine_name = "../yolov9-m-converted.engine";
std::string img_dir = "../images";
std::string sub_type = "m";
// speed test or inference
const int speed_test_iter = 1000;
// const int speed_test_iter = 1;
// if (!parse_args(argc, argv, wts_name, engine_name, img_dir, sub_type)) {
// std::cerr << "Arguments not right!" << std::endl;
// std::cerr << "./yolov9 -s [.wts] [.engine] [s/m/c/e/gt/gs/gm/gc/ge] // serialize model to plan file" << std::endl;
// std::cerr << "./yolov9 -d [.engine] ../samples // deserialize plan file and run inference" << std::endl;
// return -1;
// }
// Create a model using the API directly and serialize it to a file
if (!wts_name.empty()) {
serialize_engine(kBatchSize, wts_name, sub_type, engine_name);
return 0;
}
// Deserialize the engine from file
IRuntime* runtime = nullptr;
ICudaEngine* engine = nullptr;
IExecutionContext* context = nullptr;
deserialize_engine(engine_name, &runtime, &engine, &context);
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreate(&stream));
cuda_preprocess_init(kMaxInputImageSize);
// Prepare cpu and gpu buffers
float* device_buffers[2];
float* output_buffer_host = nullptr;
prepare_buffer(engine, &device_buffers[0], &device_buffers[1], &output_buffer_host);
// Read images from directory
std::vector<std::string> file_names;
if (read_files_in_dir(img_dir.c_str(), file_names) < 0) {
std::cerr << "read_files_in_dir failed." << std::endl;
return -1;
}
// batch predict
for (size_t i = 0; i < file_names.size(); i += kBatchSize) {
// Get a batch of images
std::vector<cv::Mat> img_batch;
std::vector<std::string> img_name_batch;
for (size_t j = i; j < i + kBatchSize && j < file_names.size(); j++) {
cv::Mat img = cv::imread(img_dir + "/" + file_names[j]);
img_batch.push_back(img);
img_name_batch.push_back(file_names[j]);
}
// Preprocess
cuda_batch_preprocess(img_batch, device_buffers[0], kInputW, kInputH, stream);
// Run inference
auto start = std::chrono::system_clock::now();
for (int j = 0; j < speed_test_iter; j++) {
infer(*context, stream, (void**)device_buffers, output_buffer_host, kBatchSize);
}
// infer(*context, stream, (void**)device_buffers, output_buffer_host, kBatchSize);
auto end = std::chrono::system_clock::now();
std::cout << "inference time: "
<< std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() / 1000.0 /
speed_test_iter
<< "ms" << std::endl;
// NMS
std::vector<std::vector<Detection>> res_batch;
batch_nms(res_batch, output_buffer_host, img_batch.size(), kOutputSize, kConfThresh, kNmsThresh);
// Draw bounding boxes
draw_bbox(img_batch, res_batch);
// Save images
for (size_t j = 0; j < img_batch.size(); j++) {
cv::imwrite("_" + img_name_batch[j], img_batch[j]);
}
}
// Release stream and buffers
cudaStreamDestroy(stream);
CUDA_CHECK(cudaFree(device_buffers[0]));
CUDA_CHECK(cudaFree(device_buffers[1]));
delete[] output_buffer_host;
cuda_preprocess_destroy();
// Destroy the engine
delete context;
delete engine;
delete runtime;
// Print histogram of the output distribution
//std::cout << "\nOutput:\n\n";
//for (unsigned int i = 0; i < kOutputSize; i++)
//{
// std::cout << prob[i] << ", ";
// if (i % 10 == 0) std::cout << std::endl;
//}
//std::cout << std::endl;
return 0;
}