-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcv_model_training.py
77 lines (56 loc) · 2.36 KB
/
cv_model_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import tensorflow as tf
#from tensorflow.keras.datasets import cifar10
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.callbacks import TensorBoard
from sklearn.model_selection import train_test_split
import pickle
pickle_in = open("X_train.pickle","rb")
X = pickle.load(pickle_in)
pickle_in = open("y_train.pickle","rb")
y = pickle.load(pickle_in)
y_binary = to_categorical(y)
X = X/255.0
x_train,x_val,y_train,y_val = train_test_split(X,y_binary,test_size=0.2)
datagen = ImageDataGenerator(
rotation_range=90,
#width_shift_range=0.2,
#height_shift_range=0.2,
horizontal_flip=True)
#vertical_flip=True)
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
#datagen.fit(x_train)
NAME = "cv_model_training"
tensorboard = TensorBoard(log_dir="logs\{}".format(NAME))
model = Sequential()
model.add(Conv2D(32, (5, 5), input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (5, 5)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (5, 5)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(256, (5, 5)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
#model.add(Activation('relu'))
model.add(Dense(103))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# fits the model on batches with real-time data augmentation:
#model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
# steps_per_epoch=len(x_train) / 32, epochs=20, validation_data=(x_val,y_val),
# callbacks=[tensorboard])
model.fit(datagen.flow(x_train, y_train), epochs=20, validation_data=(x_val,y_val),
callbacks=[tensorboard])
model.save("cv_cnn_model.model")