Skip to content
/ SpiceLab Public

Modern, typed Python toolkit for SPICE circuit simulation (NGSpice) and analysis (AC/TRAN/OP, Monte Carlo, stability).

License

Notifications You must be signed in to change notification settings

lgili/SpiceLab

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

spicelab

Build Docs PyPI Python License

spicelab is a typed Python layer for describing SPICE circuits, running simulations against multiple engines (NGSpice, LTspice CLI, Xyce) and analysing the results with familiar data libraries (xarray · pandas · polars).


Highlights

  • Unified orchestrator – run a circuit on any configured engine with one call.
  • Deterministic caching – hashed jobs avoid re-running identical sweeps/Monte Carlo trials.
  • Typed circuits – ports, nets and components are Python objects; no stringly-typed surprises.
  • xarray-first results – datasets carry canonical signal names (V(node), I(element)) and rich metadata.
  • Measurement helpers.meas-style gain/overshoot/settling specs return tidy polars DataFrames.
  • Extensible component library – build, preview and export netlists (including Graphviz topology previews).
  • Reporting helpers – turn simulation outputs into HTML/Markdown summaries with a few lines of code.
  • Environment doctorpython -m spicelab.doctor validates engine/shared-library setup before long runs.

Engine support matrix

Feature NGSpice LTspice CLI Xyce
Operating point / AC / Tran analyses
Value/grid sweeps with caching
Monte Carlo orchestrator
Co-simulation callbacks (libngspice shared)
HTML / Markdown reporting
Plot helpers (Bode / Step / Nyquist)

LTspice and Xyce support rely on the respective CLI binaries being installed and discoverable. Set SPICELAB_LTSPICE or SPICELAB_XYCE when the executables are not on PATH. Co-simulation callbacks require the shared libngspice library.


Quick start

Install the package straight from PyPI:

python -m pip install --upgrade pip
python -m pip install spicelab

Need optional helpers? Append extras such as spicelab[viz] for Plotly or spicelab[data] for xarray/polars integrations.

Once installed, connect an engine (NGSpice, LTspice CLI, or Xyce) and run your first transient analysis:

from spicelab.core.circuit import Circuit
from spicelab.core.components import Vdc, Resistor, Capacitor
from spicelab.core.net import GND
from spicelab.core.types import AnalysisSpec
from spicelab.engines import run_simulation

c = Circuit("rc_lowpass")
V1 = Vdc("VIN", 5.0)
R1 = Resistor("R", "1k")
C1 = Capacitor("C", "100n")
for comp in (V1, R1, C1):
    c.add(comp)

c.connect(V1.ports[0], R1.ports[0])
c.connect(R1.ports[1], C1.ports[0])
c.connect(V1.ports[1], GND)
c.connect(C1.ports[1], GND)

tran = AnalysisSpec("tran", {"tstep": "10us", "tstop": "5ms"})
handle = run_simulation(c, [tran], engine="ngspice")
ds = handle.dataset()
print(list(ds.data_vars))

Sweeps in one line

from spicelab.analysis.sweep_grid import run_value_sweep

value_sweep = run_value_sweep(
    circuit=c,
    component=R1,
    values=["1k", "2k", "5k"],
    analyses=[tran],
    engine="ngspice",
)
for run in value_sweep.runs:
    ds = run.handle.dataset()
    print(run.value, list(ds.data_vars))

Monte Carlo with typed metrics

from spicelab.analysis import NormalPct, monte_carlo

mc = monte_carlo(
    circuit=c,
    mapping={R1: NormalPct(0.05)},
    n=64,
    analyses=[AnalysisSpec("op", {})],
    engine="ngspice",
    seed=42,
)

print(mc.to_dataframe(metric=None, param_prefix="param_").head())

Notebook workflows

  • Build complex circuits quickly with the DSL:
    from spicelab.dsl import CircuitBuilder
    
    builder = CircuitBuilder("rc_filter")
    builder.vdc("vin", "gnd", value="5")
    builder.resistor("vin", "vout", value="1k")
    builder.capacitor("vout", "gnd", value="220n")
    circuit = builder.build()
    circuit.connectivity_dataframe()  # pandas.DataFrame for rich display
  • Use interactive widgets inside Jupyter/VS Code:
    from spicelab.viz.notebook import connectivity_widget, dataset_plot_widget
    
    connectivity_widget(circuit)
    dataset_plot_widget(handle.dataset())

Documentation

Full documentation lives at https://lgili.github.io/CircuitToolkit/:

Runnable demos are under examples/ and can be executed with uv run --active python examples/<script>.py. Highlights:

  • examples/closed_loop.py – co-simulation loop where Python adjusts a source via the shared ngspice backend callbacks.

  • Prefer working from source? Clone the repo and use uv:
    uv venv
    source .venv/bin/activate            # Linux/macOS
    # .\.venv\Scripts\activate.ps1       # Windows PowerShell
    uv pip install -e .[viz,data]

Installation details

  • Python 3.10+
  • Install from PyPI with pip install spicelab
  • Optional extras: spicelab[viz] for Plotly output, spicelab[data] for xarray/polars helpers
  • Engines (any subset): NGSpice · LTspice CLI · Xyce
  • For ngspice co-simulation callbacks, also install the libngspice shared library and export SPICELAB_NGSPICE_SHARED (see installation docs).
  • Quick diagnostic: python -m spicelab.doctor

Environment overrides when binaries are not on PATH:

Variable Purpose
SPICELAB_NGSPICE Absolute path to ngspice
SPICELAB_NGSPICE_SHARED Absolute path to libngspice (.so/.dylib/.dll)
SPICELAB_LTSPICE Absolute path to LTspice CLI (LTspice/XVIIx64.exe)
SPICELAB_XYCE Absolute path to Xyce
SPICELAB_ENGINE Default engine name for examples (ngspice, ltspice, xyce)

Contributing

  • Run the formatting/lint suite: ruff format . && ruff check . --fix
  • Run tests: pytest
  • Static typing: mypy

Pull requests are welcome! Please open an issue if you plan a larger change so we can discuss the design direction.


License & acknowledgements

MIT License © Luiz Carlos Gili. spicelab stands on the shoulders of the SPICE ecosystem (NGSpice, LTspice, Xyce) and scientific Python libraries. Many thanks to their authors and maintainers.

About

Modern, typed Python toolkit for SPICE circuit simulation (NGSpice) and analysis (AC/TRAN/OP, Monte Carlo, stability).

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages