-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOLGE.m
289 lines (253 loc) · 8.65 KB
/
OLGE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
function [eigvector, eigvalue, bSuccess] = OLGE(W, D, options, data)
% OLGE: Orthogonal Linear Graph Embedding
%
% [eigvector, eigvalue, bSuccess] = OLGE(W, D, options, data)
%
% Input:
% data - data matrix. Each row vector of data is a
% sample vector.
% W - Affinity graph matrix.
% D - Constraint graph matrix.
% LGE solves the optimization problem of
% a* = argmax (a'data'WXa)/(a'data'DXa)
% with the constraint a_i'*a_j=0 (i ~= j)
% Default: D = I
%
% options - Struct value in Matlab. The fields in options
% that can be set:
%
% ReducedDim - The dimensionality of the reduced
% subspace. If 0, all the dimensions
% will be kept. Default is 30.
%
% Regu - 1: regularized solution,
% a* = argmax (a'data'WXa)/(a'data'DXa+ReguAlpha*I)
% 0: solve the sinularity problem by SVD (PCA)
% Default: 1
%
% ReguAlpha - The regularization parameter. Valid
% when Regu==1. Default value is 0.1.
%
% ReguType - 'Ridge': Tikhonov regularization
% 'Custom': User provided
% regularization matrix
% Default: 'Ridge'
% regularizerR - (nFea x nFea) regularization
% matrix which should be provided
% if ReguType is 'Custom'. nFea is
% the feature number of data
% matrix
%
% PCARatio - The percentage of principal
% component kept in the PCA
% step. The percentage is
% calculated based on the
% eigenvalue. Default is 1
% (100%, all the non-zero
% eigenvalues will be kept.
% If PCARatio > 1, the PCA step
% will keep exactly PCARatio principle
% components (does not exceed the
% exact number of non-zero components).
%
% bDisp - 0 or 1. diagnostic information
% display
%
% Output:
% eigvector - Each column is an embedding function, for a new
% sample vector (row vector) x, y = x*eigvector
% will be the embedding result of x.
% eigvalue - The sorted eigvalue of the eigen-problem.
%
% bSuccess - 0 or 1. Indicates whether the OLPP calcuation
% is successful. (OLPP needs matrix inverse,
% which will lead to eigen-decompose a
% non-symmetrical matrix. The caculation precsion
% of malab sometimes will cause imaginary numbers
% in eigenvectors. It seems that the caculation
% precsion of matlab is a little bit random, you
% can try again if not successful. More robust
% and efficient algorithms are welcome!)
%
%
% Examples:
%
% See also LGE, OLPP, LPP.
%
%
%Reference:
%
% 1. Deng Cai and Xiaofei He, "Orthogonal Locality Preserving Indexing"
% The 28th Annual International ACM SIGIR Conference (SIGIR'2005),
% Salvador, Brazil, Aug. 2005.
%
% 2. Deng Cai, Xiaofei He, Jiawei Han and Hong-Jiang Zhang, "Orthogonal
% Laplacianfaces for Face Recognition". IEEE Transactions on Image
% Processing, vol. 15, no. 11, pp. 3608-3614, November, 2006.
%
% 3. Deng Cai, Xiaofei He, Jiawei Han, "Spectral Regression for Efficient
% Regularized Subspace Learning", IEEE International Conference on
% Computer Vision (ICCV), Rio de Janeiro, Brazil, Oct. 2007.
%
% 4. Deng Cai, "Spectral Regression: A Regression Framework for
% Efficient Regularized Subspace Learning", PhD Thesis, Department of
% Computer Science, UIUC, 2009.
%
% version 3.0 --Dec/2011
% version 2.0 --May/2007
% version 1.0 --Sep/2006
%
% Written by Deng Cai (dengcai AT gmail.com)
if (~exist('options','var'))
options = [];
end
ReducedDim = 30;
if isfield(options,'ReducedDim')
ReducedDim = options.ReducedDim;
end
if ~isfield(options,'Regu') || ~options.Regu
bPCA = 1;
if ~isfield(options,'PCARatio')
options.PCARatio = 1;
end
else
bPCA = 0;
if ~isfield(options,'ReguType')
options.ReguType = 'Ridge';
end
if ~isfield(options,'ReguAlpha')
options.ReguAlpha = 0.1;
end
end
if ~isfield(options,'bDisp')
options.bDisp = 1;
end
bD = 1;
if ~exist('D','var') || isempty(D)
bD = 0;
end
[nSmp,nFea] = size(data);
if size(W,1) ~= nSmp
error('W and data mismatch!');
end
if bD && (size(D,1) ~= nSmp)
error('D and data mismatch!');
end
%======================================
% SVD
%======================================
if bPCA
[U, S, V] = mySVD(data);
[U, S, V]=CutonRatio(U,S,V,options);
data = U*S;
eigvector_PCA = V;
if bD
DPrime = data'*D*data;
else
DPrime = data'*data;
end
DPrime = max(DPrime,DPrime');
else
if bD
DPrime = data'*D*data;
else
DPrime = data'*data;
end
switch lower(options.ReguType)
case {lower('Ridge')}
for i=1:size(DPrime,1)
DPrime(i,i) = DPrime(i,i) + options.ReguAlpha;
end
case {lower('Tensor')}
DPrime = DPrime + options.ReguAlpha*options.regularizerR;
case {lower('Custom')}
DPrime = DPrime + options.ReguAlpha*options.regularizerR;
otherwise
error('ReguType does not exist!');
end
DPrime = max(DPrime,DPrime');
end
WPrime = data'*W*data;
WPrime = max(WPrime,WPrime');
%======================================
% Generalized Eigen with Orthogonal Constraint
%======================================
dimM = size(WPrime,2);
if ReducedDim > dimM
ReducedDim = dimM;
end
rDPrime = chol(DPrime);
lDPrime = rDPrime';
Q0 = rDPrime\(lDPrime\WPrime); % Q0 = inv(DPrime)*WPrime;
eigvector = [];
eigvalue = [];
tmpD = [];
Q = Q0;
bSuccess = 1;
for i = 1:ReducedDim,
try
option = struct('disp',0);
[eigVec, eigv] = eigs(Q,1,'lr',option);
catch
disp('eigs Error!');
bSuccess = 0;
return;
end
if ~isreal(eigVec)
disp('Virtual part!');
bSuccess = 0;
break;
end
if eigv < 1e-3
break;
end
eigvector = [eigvector, eigVec]; % Each col of D is a eigenvector
eigvalue = [eigvalue;eigv];
tmpD = [tmpD, rDPrime\(lDPrime\eigVec)]; % tmpD = inv(DPrime)*D;
DTran = eigvector';
tmptmpD = DTran*tmpD;
tmptmpD = max(tmptmpD,tmptmpD');
rtmptmpD = chol(tmptmpD);
tmptmpD = rtmptmpD\(rtmptmpD'\DTran); % tmptmpD = inv(D'*inv(DPrime)*D)*D'
Q = -tmpD*tmptmpD;
for j=1:dimM
Q(j,j) = Q(j,j) + 1;
end
Q = Q*Q0;
if (mod(i,10) == 0) && options.bDisp
disp([num2str(i),' eigenvector calculated!']);
end
end
if bPCA
if bSuccess
eigvector = eigvector_PCA*eigvector;
elseif size(eigvector,1) == size(eigvector_PCA,2)
eigvector = eigvector_PCA*eigvector;
end
end
function [U, S, V]=CutonRatio(U,S,V,options)
if ~isfield(options, 'PCARatio')
options.PCARatio = 1;
end
eigvalue_PCA = full(diag(S));
if options.PCARatio > 1
idx = options.PCARatio;
if idx < length(eigvalue_PCA)
U = U(:,1:idx);
V = V(:,1:idx);
S = S(1:idx,1:idx);
end
elseif options.PCARatio < 1
sumEig = sum(eigvalue_PCA);
sumEig = sumEig*options.PCARatio;
sumNow = 0;
for idx = 1:length(eigvalue_PCA)
sumNow = sumNow + eigvalue_PCA(idx);
if sumNow >= sumEig
break;
end
end
U = U(:,1:idx);
V = V(:,1:idx);
S = S(1:idx,1:idx);
end