-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.py
101 lines (87 loc) · 3.28 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import argparse
import pickle
import time
from functools import partial
from multiprocessing import Pool
import cv2
import numpy
def pixelate(image: cv2.Mat, /, width: int):
"""Convert an image to a 2-dimensional array of RGB tuples.
The image is split into tiles, where `width` is the number of tiles in a row.
The average color of each tile is calculated and is used to represent a pixel.
"""
image_height, image_width = image.shape[0], image.shape[1]
tile_size = image_width // width
pixels = []
for lower_y in range(0, image_height, tile_size * 2):
upper_y = lower_y + tile_size
row = []
for lower_x in range(0, image_width, tile_size):
upper_x = lower_x + tile_size
tile1 = image[lower_y:upper_y, lower_x:upper_x]
pixel1 = numpy.average(tile1, axis=(1, 0)).astype(numpy.uint8)
if upper_y < image_height:
upper_y2 = upper_y + tile_size
tile2 = image[lower_y:upper_y2, lower_x:upper_x]
pixel2 = numpy.average(tile2, axis=(1, 0)).astype(numpy.uint8)
else:
pixel2 = (0, 0, 0)
row.append((tuple(pixel1), tuple(pixel2)))
pixels.append(row)
return pixels
def pixels_to_text(pixels: list, /) -> str:
pixel_template = (
"\x1b[48;2;{background_red};{background_green};{background_blue}m"
"\x1b[38;2;{foreground_red};{foreground_green};{foreground_blue}m▀\x1b[0m"
)
text = ""
for row in pixels:
for foreground, background in row:
text += pixel_template.format(
foreground_red=foreground[0],
foreground_green=foreground[1],
foreground_blue=foreground[2],
background_red=background[0],
background_green=background[1],
background_blue=background[2],
)
text += "\n"
return text
def process_image(image: cv2.Mat, /, width: int) -> str:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pixels = pixelate(image, width)
text = pixels_to_text(pixels)
return text
def process_video(video: cv2.VideoCapture, /, width: int) -> list[str]:
success, image = video.read()
partial_process_image = partial(process_image, width=width)
print("Processing video...")
start_time = time.time()
images = []
while success:
images.append(image)
success, image = video.read()
with Pool() as pool:
frames = pool.map(partial_process_image, images)
print(f"Finished processing in {time.time() - start_time} seconds.")
return frames
def main():
parser = argparse.ArgumentParser()
parser.add_argument("file")
parser.add_argument("output")
parser.add_argument("-c", "--width", type=int, default=80)
parser.add_argument("-v", "--video", action="store_true")
args = parser.parse_args()
if args.video:
media = process_video(cv2.VideoCapture(args.file), width=args.width)
media_type = "video"
else:
media = process_image(cv2.imread(args.file), width=args.width)
media_type = "image"
with open(args.output, "wb") as file:
pickle.dump(
{"media": media, "media_type": media_type},
file,
)
if __name__ == "__main__":
main()