forked from karpathy/llama2.c
-
Notifications
You must be signed in to change notification settings - Fork 9
/
run.c
490 lines (433 loc) · 17.1 KB
/
run.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
/*
Inference for Llama-2 Transformer model in pure C.
Example compile: (see README for more details)
$ gcc -O3 -o run run.c -lm
Then run with:
$ ./run
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <string.h>
#include <sys/time.h>
// ----------------------------------------------------------------------------
// Transformer and RunState structs, and related memory management
typedef struct {
int dim; // transformer dimension
int hidden_dim; // for ffn layers
int n_layers; // number of layers
int n_heads; // number of query heads
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
int vocab_size; // vocabulary size, usually 256 (byte-level)
int seq_len; // max sequence length
} Config;
typedef struct {
// token embedding table
float* token_embedding_table; // (vocab_size, dim)
// weights for rmsnorms
float* rms_att_weight; // (layer, dim) rmsnorm weights
float* rms_ffn_weight; // (layer, dim)
// weights for matmuls
float* wq; // (layer, dim, dim)
float* wk; // (layer, dim, dim)
float* wv; // (layer, dim, dim)
float* wo; // (layer, dim, dim)
// weights for ffn
float* w1; // (layer, hidden_dim, dim)
float* w2; // (layer, dim, hidden_dim)
float* w3; // (layer, hidden_dim, dim)
// final rmsnorm
float* rms_final_weight; // (dim,)
// freq_cis for RoPE relatively positional embeddings
float* freq_cis_real; // (seq_len, dim/2)
float* freq_cis_imag; // (seq_len, dim/2)
} TransformerWeights;
typedef struct {
// current wave of activations
float *x; // activation at current time stamp (dim,)
float *xb; // same, but inside a residual branch (dim,)
float *xb2; // an additional buffer just for convenience (dim,)
float *hb; // buffer for hidden dimension in the ffn (hidden_dim,)
float *hb2; // buffer for hidden dimension in the ffn (hidden_dim,)
float *q; // query (dim,)
float *k; // key (dim,)
float *v; // value (dim,)
float *att; // buffer for scores/attention values (seq_len,)
float *logits; // output logits
// kv cache
float* key_cache; // (layer, seq_len, dim)
float* value_cache; // (layer, seq_len, dim)
} RunState;
void malloc_run_state(RunState* s, Config* p) {
// we calloc instead of malloc to keep valgrind happy
s->x = calloc(p->dim, sizeof(float));
s->xb = calloc(p->dim, sizeof(float));
s->xb2 = calloc(p->dim, sizeof(float));
s->hb = calloc(p->hidden_dim, sizeof(float));
s->hb2 = calloc(p->hidden_dim, sizeof(float));
s->q = calloc(p->dim, sizeof(float));
s->k = calloc(p->dim, sizeof(float));
s->v = calloc(p->dim, sizeof(float));
s->att = calloc(p->seq_len, sizeof(float));
s->logits = calloc(p->vocab_size, sizeof(float));
s->key_cache = calloc(p->n_layers * p->seq_len * p->dim, sizeof(float));
s->value_cache = calloc(p->n_layers * p->seq_len * p->dim, sizeof(float));
// ensure all mallocs went fine
if (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q
|| !s->k || !s->v || !s->att || !s->logits || !s->key_cache
|| !s->value_cache) {
printf("malloc failed!\n");
exit(1);
}
}
void free_run_state(RunState* s) {
free(s->x);
free(s->xb);
free(s->xb2);
free(s->hb);
free(s->hb2);
free(s->q);
free(s->k);
free(s->v);
free(s->att);
free(s->logits);
free(s->key_cache);
free(s->value_cache);
}
void malloc_weights(TransformerWeights* w, Config* p) {
// we calloc instead of malloc to keep valgrind happy
w->token_embedding_table = calloc(p->vocab_size * p->dim, sizeof(float));
w->rms_att_weight = calloc(p->n_layers * p->dim, sizeof(float));
w->rms_ffn_weight = calloc(p->n_layers * p->dim, sizeof(float));
w->wq = calloc(p->n_layers * p->dim * p->dim, sizeof(float));
w->wk = calloc(p->n_layers * p->dim * p->dim, sizeof(float));
w->wv = calloc(p->n_layers * p->dim * p->dim, sizeof(float));
w->wo = calloc(p->n_layers * p->dim * p->dim, sizeof(float));
w->w1 = calloc(p->n_layers * p->hidden_dim * p->dim, sizeof(float));
w->w2 = calloc(p->n_layers * p->dim * p->hidden_dim, sizeof(float));
w->w3 = calloc(p->n_layers * p->hidden_dim * p->dim, sizeof(float));
w->rms_final_weight = calloc(p->dim, sizeof(float));
w->freq_cis_real = calloc(p->seq_len * p->dim / 2, sizeof(float));
w->freq_cis_imag = calloc(p->seq_len * p->dim / 2, sizeof(float));
// ensure all mallocs went fine
if (!w->token_embedding_table || !w->rms_att_weight || !w->rms_ffn_weight
|| !w->wq || !w->wk || !w->wv || !w->wo || !w->w1 || !w->w2 || !w->w3 ||
!w->rms_final_weight || !w->freq_cis_real || !w->freq_cis_imag) {
printf("malloc failed!\n");
exit(1);
}
}
void free_weights(TransformerWeights* w) {
free(w->token_embedding_table);
free(w->rms_att_weight);
free(w->rms_ffn_weight);
free(w->wq);
free(w->wk);
free(w->wv);
free(w->wo);
free(w->w1);
free(w->w2);
free(w->w3);
free(w->rms_final_weight);
free(w->freq_cis_real);
free(w->freq_cis_imag);
}
// ----------------------------------------------------------------------------
// initialization: read from checkpoint
int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f) {
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != p->vocab_size * p->dim) return 1;
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != p->n_layers * p->dim) return 1;
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != p->n_layers * p->dim * p->dim) return 1;
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != p->n_layers * p->dim * p->dim) return 1;
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != p->n_layers * p->dim * p->dim) return 1;
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != p->n_layers * p->dim * p->dim) return 1;
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != p->n_layers * p->dim) return 1;
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != p->n_layers * p->dim * p->hidden_dim) return 1;
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != p->n_layers * p->hidden_dim * p->dim) return 1;
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != p->n_layers * p->dim * p->hidden_dim) return 1;
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != p->dim) return 1;
int head_size = p->dim / p->n_heads;
if (fread(w->freq_cis_real, sizeof(float), p->seq_len * head_size / 2, f) != p->seq_len * head_size / 2) return 1;
if (fread(w->freq_cis_imag, sizeof(float), p->seq_len * head_size / 2, f) != p->seq_len * head_size / 2) return 1;
return 0;
}
// ----------------------------------------------------------------------------
// neural net blocks
void accum(float *a, float *b, int size) {
for (int i = 0; i < size; i++) {
a[i] += b[i];
}
}
void rmsnorm(float* o, float* x, float* weight, int size) {
// calculate sum of squares
float ss = 0.0f;
for (int j = 0; j < size; j++) {
ss += x[j] * x[j];
}
ss /= size;
ss += 1e-5f;
ss = 1.0f / sqrt(ss);
// normalize and scale
for (int j = 0; j < size; j++) {
o[j] = weight[j] * (ss * x[j]);
}
}
void softmax(float* x, int size) {
// find max value (for numerical stability)
float max_val = x[0];
for (int i = 1; i < size; i++) {
if (x[i] > max_val) {
max_val = x[i];
}
}
// exp and sum
float sum = 0.0f;
for (int i = 0; i < size; i++) {
x[i] = exp(x[i] - max_val);
sum += x[i];
}
// normalize
for (int i = 0; i < size; i++) {
x[i] /= sum;
}
}
void matmul(float* xout, float* x, float* w, int n, int d) {
// W (d,n) @ x (n,) -> xout (d,)
#pragma omp parallel for
for (int i = 0; i < d; i++) {
float val = 0.0f;
for (int j = 0; j < n; j++) {
val += w[i * n + j] * x[j];
}
xout[i] = val;
}
}
void transformer(int token, int pos, Config* p, RunState* s, TransformerWeights* w) {
// a few convenience variables
float *x = s->x;
int dim = p->dim;
int hidden_dim = p->hidden_dim;
int head_size = dim / p->n_heads;
// copy the token embedding into x
float* content_row = &(w->token_embedding_table[token * dim]);
memcpy(x, content_row, dim*sizeof(*x));
// pluck out the "pos" row of freq_cis_real and freq_cis_imag
float* freq_cis_real_row = w->freq_cis_real + pos * head_size / 2;
float* freq_cis_imag_row = w->freq_cis_imag + pos * head_size / 2;
// forward all the layers
for(int l = 0; l < p->n_layers; l++) {
// attention rmsnorm
rmsnorm(s->xb, x, w->rms_att_weight + l*dim, dim);
// qkv matmuls for this position
matmul(s->q, s->xb, w->wq + l*dim*dim, dim, dim);
matmul(s->k, s->xb, w->wk + l*dim*dim, dim, dim);
matmul(s->v, s->xb, w->wv + l*dim*dim, dim, dim);
// apply RoPE rotation to the q and k vectors for each head
for (int h = 0; h < p->n_heads; h++) {
// get the q and k vectors for this head
float* q = s->q + h * head_size;
float* k = s->k + h * head_size;
// rotate q and k by the freq_cis_real and freq_cis_imag
for (int i = 0; i < head_size; i+=2) {
float q0 = q[i];
float q1 = q[i+1];
float k0 = k[i];
float k1 = k[i+1];
float fcr = freq_cis_real_row[i/2];
float fci = freq_cis_imag_row[i/2];
q[i] = q0 * fcr - q1 * fci;
q[i+1] = q0 * fci + q1 * fcr;
k[i] = k0 * fcr - k1 * fci;
k[i+1] = k0 * fci + k1 * fcr;
}
}
// save key,value at this time step (pos) to our kv cache
int loff = l * p->seq_len * dim; // kv cache layer offset for convenience
float* key_cache_row = s->key_cache + loff + pos * dim;
float* value_cache_row = s->value_cache + loff + pos * dim;
memcpy(key_cache_row, s->k, dim*sizeof(*key_cache_row));
memcpy(value_cache_row, s->v, dim*sizeof(*value_cache_row));
// multihead attention. iterate over all heads
for (int h = 0; h < p->n_heads; h++) {
// get the query vector for this head
float* q = s->q + h * head_size;
// iterate over all timesteps, including the current one
for (int t = 0; t <= pos; t++) {
// get the key vector for this head and at this timestep
float* k = s->key_cache + loff + t * dim + h * head_size;
// calculate the attention score as the dot product of q and k
float score = 0.0f;
for (int i = 0; i < head_size; i++) {
score += q[i] * k[i];
}
score /= sqrtf(head_size);
// save the score to the attention buffer
s->att[t] = score;
}
// softmax the scores to get attention weights, from 0..pos inclusively
softmax(s->att, pos + 1);
// weighted sum of the values, store back into xb
for (int i = 0; i < head_size; i++) {
float val = 0.0f;
for (int t = 0; t <= pos; t++) {
val += s->att[t] * s->value_cache[loff + t * dim + h * head_size + i]; // note bad locality
}
s->xb[h * head_size + i] = val;
}
}
// final matmul to get the output of the attention
matmul(s->xb2, s->xb, w->wo + l*dim*dim, dim, dim);
// residual connection back into x
accum(x, s->xb2, dim);
// ffn rmsnorm
rmsnorm(s->xb, x, w->rms_ffn_weight + l*dim, dim);
// Now for FFN in PyTorch we have: self.w2(F.silu(self.w1(x)) * self.w3(x))
// first calculate self.w1(x) and self.w3(x)
matmul(s->hb, s->xb, w->w1 + l*dim*hidden_dim, dim, hidden_dim);
matmul(s->hb2, s->xb, w->w3 + l*dim*hidden_dim, dim, hidden_dim);
// F.silu; silu(x)=x*σ(x),where σ(x) is the logistic sigmoid
for (int i = 0; i < hidden_dim; i++) {
s->hb[i] = s->hb[i] * (1.0f / (1.0f + expf(-s->hb[i])));
}
// elementwise multiply with w3(x)
for (int i = 0; i < hidden_dim; i++) {
s->hb[i] = s->hb[i] * s->hb2[i];
}
// final matmul to get the output of the ffn
matmul(s->xb, s->hb, w->w2 + l*dim*hidden_dim, hidden_dim, dim);
// residual connection
accum(x, s->xb, dim);
}
// final rmsnorm
rmsnorm(x, x, w->rms_final_weight, dim);
// classifier into logits
matmul(s->logits, x, w->token_embedding_table, p->dim, p->vocab_size);
}
int sample(float* probabilities, int n) {
// sample index from probabilities, they must sum to 1
float r = (float)rand() / (float)RAND_MAX;
float cdf = 0.0f;
for (int i = 0; i < n; i++) {
cdf += probabilities[i];
if (r < cdf) {
return i;
}
}
return n - 1; // in case of rounding errors
}
int argmax(float* v, int n) {
// return argmax of v in elements 0..n
int max_i = 0;
float max_p = v[0];
for (int i = 1; i < n; i++) {
if (v[i] > max_p) {
max_i = i;
max_p = v[i];
}
}
return max_i;
}
// ----------------------------------------------------------------------------
long time_in_ms() {
struct timeval time;
gettimeofday(&time, NULL);
return time.tv_sec * 1000 + time.tv_usec / 1000;
}
int main(int argc, char *argv[]) {
// poor man's C argparse
char *checkpoint = NULL;
float temperature = 0.9f;
// 'checkpoint' is necessary arg
if (argc < 2) {
printf("Usage: %s <checkpoint_file> [temperature] [seed]\n", argv[0]);
return 1;
}
checkpoint = argv[1];
// temperature is optional
if (argc >= 3) {
temperature = atof(argv[2]);
}
// seed is optional
if (argc >= 4) {
unsigned int seed = atoi(argv[3]);
srand(seed);
} else {
time_t current_time;
time(¤t_time);
srand((unsigned int)current_time);
}
// read in the model.bin file
Config config;
TransformerWeights weights;
{
FILE *file = fopen(checkpoint, "rb");
if (!file) {
printf("Unable to open the checkpoint file %s!\n", checkpoint);
return 1;
}
// read in the config header
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
// read in the Transformer weights
malloc_weights(&weights, &config);
if(checkpoint_init_weights(&weights, &config, file)) { return 1; }
fclose(file);
}
// read in the tokenizer.bin file
char** vocab = (char**)malloc(config.vocab_size * sizeof(char*));
{
FILE *file = fopen("tokenizer.bin", "rb");
if (!file) {
printf("Unable to open the tokenizer file tokenizer.bin! Run "
"python tokenizer.py to convert tokenizer.model -> tokenizer.bin\n");
return 1;
}
int len;
for (int i = 0; i < config.vocab_size; i++) {
if(fread(&len, sizeof(int), 1, file) != 1) { return 1; }
vocab[i] = (char *)malloc(len + 1);
if(fread(vocab[i], len, 1, file) != 1) { return 1; }
vocab[i][len] = '\0'; // add the string terminating token
}
fclose(file);
}
// create and init the application RunState
RunState state;
malloc_run_state(&state, &config);
// the current position we are in
long start = time_in_ms();
int next;
int token = 1; // 1 = BOS token in Llama-2 sentencepiece
int pos = 0;
while (pos < config.seq_len) {
// forward the transformer to get logits for the next token
transformer(token, pos, &config, &state, &weights);
// sample the next token
if(temperature == 0.0f) {
// greedy argmax sampling
next = argmax(state.logits, config.vocab_size);
} else {
// apply the temperature to the logits
for (int q=0; q<config.vocab_size; q++) { state.logits[q] /= temperature; }
// apply softmax to the logits to get the probabilities for next token
softmax(state.logits, config.vocab_size);
// we now want to sample from this distribution to get the next token
next = sample(state.logits, config.vocab_size);
}
printf("%s", vocab[next]);
fflush(stdout);
// advance forward
token = next;
pos++;
}
printf("\n");
// report our achieved tok/s
long end = time_in_ms();
printf("achieved tok/s: %f\n", config.seq_len / (double)(end-start)*1000);
// memory cleanup
free_run_state(&state);
free_weights(&weights);
for (int i = 0; i < config.vocab_size; i++) { free(vocab[i]); }
free(vocab);
return 0;
}