-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathray.go
202 lines (194 loc) · 6.35 KB
/
ray.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
package rendr
import (
"gonum.org/v1/gonum/mat"
"math"
)
func rndQuantize(min, val, max float64, num uint) uint {
ret:=uint(0)
if val<=min {
ret = uint(0)
} else if val>=max {
ret = num-1
} else {
tmp:= float64(num)*(val-min)/(max-min)
ret = uint(tmp)
if ret==num{
ret-=1
}
}
return ret
}
func rndLerp(omin, omax, imin, xx, imax float64) float64 {
alpha:= (xx-imin)/(imax-imin)
return (1-alpha)*omin + alpha*omax
}
func rndRayStart(hi, vi uint, ray *rndRay, cnv *rndConvo, ctx *rndCtx) {
ray.hi = hi
ray.vi = vi
var tmp float64
if ctx.Cam.Ortho>0 {
ray.r_img = [3]float64{0, 0, -ctx.Cam.D}
ray.r0[0] = (ctx.Cam.Wdth/2)*rndLerp(-1, 1, -0.5, float64(hi), float64(ctx.Cam.Size[0])-0.5)
ray.r0[1] = (ctx.Cam.Hght/2)*rndLerp(1, -1, -0.5, float64(vi), float64(ctx.Cam.Size[1])-0.5)
} else {
ray.r_img = [3]float64{(ctx.Cam.Wdth/2)*rndLerp(-1, 1, -0.5, float64(hi), float64(ctx.Cam.Size[0])-0.5),
(ctx.Cam.Hght/2)*rndLerp(1, -1, -0.5, float64(vi), float64(ctx.Cam.Size[1])-0.5), -ctx.Cam.D}
tmp = ctx.Cam.Ncv/ctx.Cam.D
ray.r0 = [3]float64{tmp*ray.r_img[0], tmp*ray.r_img[1], tmp*ray.r_img[2]}
}
ray.k = -1
ray.p[3]=1 //homogeneous
tmp = ctx.PlaneSep/ctx.Cam.D
ray.r_step = [3]float64{tmp*ray.r_img[0], tmp*ray.r_img[1], tmp*ray.r_img[2]}
ray.delta = math.Sqrt(ray.r_step[0]*ray.r_step[0]+ray.r_step[1]*ray.r_step[1]+ray.r_step[2]*ray.r_step[2])
ray.T = 1
ray.rgb = [3]float64{ctx.OutsideValue, ctx.OutsideValue, ctx.OutsideValue}
ray.result = [4]float64{ctx.OutsideValue,0,0,0}
if ctx.Blend == rndBlendSum {
ray.mid_result = [4]float64{0,0,0,0}
ray.litresult = [4]float64{0,0,0,0}
} else if ctx.Blend == rndBlendMax {
ray.mid_result = [4]float64{-32768,-32768,-32768,-32768}
ray.litresult = [4]float64{-32768,-32768,-32768,-32768}
}
dist:= -1/math.Sqrt(ray.r_img[0]*ray.r_img[0]+ray.r_img[1]*ray.r_img[1]+ray.r_img[2]*ray.r_img[2])
ray.VdirView = [4]float64{ray.r_img[0]*dist, ray.r_img[1]*dist, ray.r_img[2]*dist, 0}
vtow:=mat.NewDense(4,4,ctx.Cam.VtoW[:])
vdir:=mat.NewVecDense(4, ray.Vdir[:])
vdirView := mat.NewVecDense(4, ray.VdirView[:])
vdir.MulVec(vtow, vdirView)
dist = 1/math.Sqrt(ray.Vdir[0]*ray.Vdir[0]+ray.Vdir[1]*ray.Vdir[1]+ray.Vdir[2]*ray.Vdir[2])
ray.Vdir = [4]float64{ray.Vdir[0]*dist, ray.Vdir[1]*dist, ray.Vdir[2]*dist, 0}
ray.set = 0
if ctx.SampleOnceStop>0 {
rndRayStep(ray, cnv, ctx)
}
}
func rndRayStep(ray *rndRay, cnv *rndConvo, ctx *rndCtx) bool{
var world_p, index_p [4]float64
var tmp,color [3]float64
ray.k = ray.k + 1
tmp = [3]float64{ray.r_step[0]*float64(ray.k),ray.r_step[1]*float64(ray.k),ray.r_step[2]*float64(ray.k)}
ray.p = [4]float64{ray.r0[0]+tmp[0], ray.r0[1]+tmp[1], ray.r0[2]+tmp[2], 1}
if -ray.p[2] - ctx.Cam.Fcv > 0 {
return false
}
vtow:=mat.NewDense(4,4,ctx.Cam.VtoW[:])
wtoi:=mat.NewDense(4,4,ctx.WtoI[:])
rayp:= mat.NewVecDense(4, ray.p[:])
worldp := mat.NewVecDense(4, world_p[:])
indexp := mat.NewVecDense(4, index_p[:])
worldp.MulVec(vtow, rayp)
indexp.MulVec(wtoi, worldp)
rndConvoEval(world_p[0], world_p[1], world_p[2], cnv, ctx)
var m_alpha float64
// TODO: Other than RGBA
if cnv.Inside==1 && ctx.Txf.len>0 {
t:= rndQuantize(ctx.Txf.vmin, cnv.Value, ctx.Txf.vmax, ctx.Txf.len)
rgb:= ctx.Txf.rgba[4*t:4*t+3]
m_alpha = ctx.Txf.rgba[4*t+3]
if m_alpha < 0 {
m_alpha = 0
} else if m_alpha>1 {
m_alpha = 1
}
m_alpha = 1 - math.Pow(1-m_alpha, ray.delta/ctx.Txf.unitStep)
color = [3]float64{rgb[0], rgb[1], rgb[2]}
if ctx.Probe==rndProbeRgbaLit {
blin:=rndBlinnPhong([3]float64{rgb[0], rgb[1], rgb[2]}, cnv.Gradient, ray.Vdir, ctx)
copy(color[:], blin[:])
// TODO: depth cueing
}
ray.set = 1;
if ctx.Blend==rndBlendOver {
ray.rgb = [3]float64{ray.rgb[0]+ray.T*m_alpha*color[0],ray.rgb[1]+ray.T*m_alpha*color[1],ray.rgb[2]+ray.T*m_alpha*color[2]}
ray.T *= 1-m_alpha
if 1-ray.T - ctx.Txf.alphaNear1 >0 {
ray.T = 0
return false
}
}
//TODO: BlendSum and BlendMax
}
if ctx.SampleOnceStop==1 {
return false
}
return true
}
func rndRayFinish(ray *rndRay, ctx *rndCtx) {
var alpha float64
switch ctx.Probe {
case rndProbeRgba:
fallthrough
case rndProbeRgbaLit:
if ray.set==0 {
ray.result = [4]float64{ctx.OutsideValue, ctx.OutsideValue, ctx.OutsideValue, ctx.OutsideValue}
}
if ctx.Blend == rndBlendOver {
alpha = 1-ray.T
if alpha<0 {
alpha=0
}else if alpha>1 {
alpha=1
}
if alpha>0 {
ray.result= [4]float64{ray.rgb[0], ray.rgb[1], ray.rgb[2], alpha}
}else{
ray.result = [4]float64{ctx.OutsideValue, ctx.OutsideValue, ctx.OutsideValue, ctx.OutsideValue}
}
}
default:
if ray.mid_result[0]==-32768{
ray.result = [4]float64{ctx.OutsideValue, ctx.OutsideValue, ctx.OutsideValue, ctx.OutsideValue}
}
copy(ray.result[:], ray.mid_result[:])
}
}
func rndRayGo(out []float64, ii, jj uint, ray *rndRay, cnv *rndConvo, ctx *rndCtx) {
rndRayStart(ii, jj, ray, cnv, ctx)
if ctx.SampleOnceStop == 0 {
var keepGoing bool
for {
keepGoing = rndRayStep(ray, cnv, ctx)
if !keepGoing {
break
}
}
}
rndRayFinish(ray, ctx)
plen := rndProbeLen(ctx.Probe)
for pi:=uint(0); pi<plen; pi++ {
out[pi] = ray.result[pi]
}
//if ctx.Timing>0 {
// out[plen] = ray.millisecs
//}
}
func rndBlinnPhong(rgbIn [3]float64, grad [3]float64, Vdir [4]float64, ctx *rndCtx) [3]float64{
var ambient, diffuse, specular, N, H, result [3]float64
ambient = [3]float64{ctx.Lparam.ka * rgbIn[0], ctx.Lparam.ka * rgbIn[1], ctx.Lparam.ka * rgbIn[2]}
copy(result[:], ambient[:])
dist:= math.Sqrt(grad[0]*grad[0]+grad[1]*grad[1]+grad[2]*grad[2])
if ctx.Light.num==0 || (ctx.Lparam.kd==0 && ctx.Lparam.ks==0) || dist==0 {
return result
}
N = [3]float64{-grad[0]/dist, -grad[1]/dist, -grad[2]/dist}
for i:=uint(0); i<ctx.Light.num; i++ {
lcol := ctx.Light.rgb[3*i:3*i+3]
ldir := ctx.Light.xyz[3*i:3*i+3]
dotTmp:= N[0]*ldir[0] + N[1]*ldir[1] + N[2]*ldir[2]
tmp:= ctx.Lparam.kd * math.Max(0, dotTmp)
diffuse = [3]float64{tmp*rgbIn[0]*lcol[0],
tmp*rgbIn[1]*lcol[1], tmp*rgbIn[2]*lcol[2]}
H = [3]float64{Vdir[0]+ldir[0], Vdir[1]+ldir[1], Vdir[2]+ldir[2]}
dist = 1/math.Sqrt(H[0]*H[0]+H[1]*H[1]+H[2]*H[2])
H = [3]float64{H[0]*dist, H[1]*dist, H[2]*dist}
dotTmp = N[0]*H[0]+N[1]*H[1]+N[2]*H[2]
tmp = ctx.Lparam.ks * math.Pow(math.Max(0, dotTmp), ctx.Lparam.p)
specular = [3]float64{tmp*lcol[0], tmp*lcol[1], tmp*lcol[2]}
for j:=0;j<3;j++ {
result[j] = ambient[j] + specular[j] + diffuse[j]
}
}
return result
}