-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGreedyLifeTime.py
268 lines (234 loc) · 9.01 KB
/
GreedyLifeTime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import math
import random
from operator import itemgetter
import copy
import pandas as pd
from ast import literal_eval
from sklearn import linear_model
from pulp import *
node_pos = [(10,10),(30,30),(50,50),(70,70),(90,90),
(10,30),(30,10),(30,50),(50,30),(50,70)]
charge_pos = [(10, 50), (90, 50)]
time_move = [1.019803902718557, 1.6, 2.0591260281974]
E = [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]
e = [0.2, 0.3, 0.3, 0.5, 0.6, 0.2, 0.6, 0.4, 0.6, 0.3]
numNode = len(node_pos)
numCharge = len(charge_pos)
E_mc = 5 # nang luong khoi tao cua MC
e_mc = 1 #cong suat sac moi giay
E_max = 10.0 #nang luong toi da
e_move = 0.1 #nang luong tieu thu moi giay cho viec di chuyen
E_move = [e_move * time_move_i for time_move_i in time_move] # nang luong tieu thu de di chuyen toi moi charge position
chargeRange = 10**10
alpha = 600
beta = 30
charge = []
delta = [[0 for u, _ in enumerate(charge_pos)] for j, _ in enumerate(node_pos)]
def getData(file_name="data.csv", index=0):
global node_pos
global numNode
global E
global e
global charge_pos
global numCharge
global time_move
global E_mc
global e_mc
global E_max
global e_move
global E_move
global alpha
global beta
df = pd.read_csv(file_name)
node_pos = list(literal_eval(df.node_pos[index]))
numNode = len(node_pos)
E = [df.energy[index] for _ in node_pos]
e = map(float, df.e[index].split(","))
charge_pos = list(literal_eval(df.charge_pos[index]))
numCharge = len(charge_pos)
velocity = df.velocity[index]
E_mc = df.E_mc[index]
E_max = df.E_max[index]
e_mc = df.e_mc[index]
e_move = df.e_move[index]
alpha = df.alpha[index]
beta = df.beta[index]
charge_extend = []
charge_extend.extend(charge_pos)
charge_extend.append((0,0))
time_move = [distance(charge_extend[i], charge_extend[i+1]) / velocity for i, _ in enumerate(charge_pos)]
E_move = [e_move * item for item in time_move]
def distance(node1, node2):
return math.sqrt((node1[0] - node2[0]) * (node1[0] - node2[0])
+ (node1[1] - node2[1]) * (node1[1] - node2[1]))
def charge(node, charge):
d = distance(node, charge)
if d > chargeRange:
return 0
else:
return alpha / ((d + beta)**2)
def getWeightLinearRegression():
regr = linear_model.LinearRegression(fit_intercept=False)
regr.fit(delta, e)
w = regr.coef_
if sum(w):
x = [item / sum(w) for item in w]
else:
x = 0
return w
def getWeightLinearPrograming1():
w = 0 # bien return
model = LpProblem("Charge", LpMinimize)
x = LpVariable.matrix("x", list(range(numCharge)), 0, None, LpContinuous)
t = LpVariable.matrix("t", list(range(numNode)), 0, None, LpContinuous)
for j, _ in enumerate(node_pos):
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - e[j] <= t[j]
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - e[j] >= -t[j]
model += lpSum(t)
status = model.solve()
if status == 1:
valueX = [value(item) for item in x]
if sum(valueX):
w = [item / sum(valueX) for item in valueX]
else:
print "khong tim duoc lo trinh"
else:
print "khong giai duoc bai toan LP"
return w
def getWeightLinearPrograming2(E_now):
w = 0 # bien return
model = LpProblem("Charge", LpMinimize)
x = LpVariable.matrix("x", list(range(numCharge)), 0, None, LpContinuous)
t = LpVariable.matrix("t", list(range(numNode)), 0, None, LpContinuous)
for j, _ in enumerate(node_pos):
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - e[j] / E_now[j] <= t[j]
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - e[j] / E_now[j] >= -t[j]
model += lpSum(t)
status = model.solve()
if status == 1:
valueX = [value(item) for item in x]
if sum(valueX):
w = [item / sum(valueX) for item in valueX]
else:
print "khong tim duoc lo trinh"
else:
print "khong giai duoc bai toan LP"
return w
def getWeightLinearPrograming3(E_now, gamma):
w = 0 # bien return
model = LpProblem("Charge", LpMinimize)
x = LpVariable.matrix("x", list(range(numCharge)), 0, None, LpContinuous)
t = LpVariable.matrix("t", list(range(numNode)), 0, None, LpContinuous)
for j, _ in enumerate(node_pos):
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - gamma * (e[j] / sum(e)) + (1 - gamma) * (E_now[j] / sum(E_now)) <= t[j]
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - gamma * (e[j] / sum(e)) + (1 - gamma) * (E_now[j] / sum(E_now)) >= -t[j]
model += lpSum(t)
status = model.solve()
if status == 1:
valueX = [value(item) for item in x]
if sum(valueX):
w = [item / sum(valueX) for item in valueX]
else:
print "khong tim duoc lo trinh"
else:
print "khong giai duoc bai toan LP"
return w
def getWeightLinearPrograming4(E_now):
w = 0 # bien return
model = LpProblem("Charge", LpMinimize)
x = LpVariable.matrix("x", list(range(numCharge)), 0, None, LpContinuous)
t = LpVariable.matrix("t", list(range(numNode)), 0, None, LpContinuous)
for j, _ in enumerate(node_pos):
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - (e[j] / sum(e)) / (E_now[j] / sum(E_now)) <= t[j]
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - (e[j] / sum(e)) / (E_now[j] / sum(E_now)) >= -t[j]
model += lpSum(t)
status = model.solve()
if status == 1:
valueX = [value(item) for item in x]
if sum(valueX):
w = [item / sum(valueX) for item in valueX]
else:
print "khong tim duoc lo trinh"
else:
print "khong giai duoc bai toan LP"
return w
def getCharge(E_mc_now, w):
t = E_mc_now / sum([w[u] * sum([charge[j][u] for j, _ in enumerate(node_pos)]) for u, _ in enumerate(charge_pos)])
x = [t * w[u] for u, _ in enumerate(charge_pos)]
return x
def getRound():
E_now = E
E_mc_now = E_mc
gen = []
T = []
remain = 0
life_time = 0
isStop = False
index = 0
t = 0
while True:
print "circle = ", t, "energy = ", min(E_now), max(E_now)
t += 1
temp_T = (E_max - E_mc_now) / e_mc
temp_E = [E_now[j] - temp_T * e[j] for j, _ in enumerate(node_pos)]
eNode = [temp_E[j] - time_move[0] * e[j] for j, _ in enumerate(node_pos)]
if min(eNode) < 0:
remain = min([E_now[j] / e[j] for j, _ in enumerate(node_pos)])
break
else:
T.append(temp_T)
E_mc_now = E_mc_now + temp_T * e_mc
E_now = temp_E
w = getWeightLinearPrograming3(E_now, 0.5)
tmp = getCharge(E_mc_now - sum(E_move), w)
x = [0 for u, _ in enumerate(charge_pos)]
for u, _ in enumerate(charge_pos):
p = [min(charge[j][u] * tmp[u], E[j] - E_now[j] + time_move[u] * e[j]) for j, node in enumerate(node_pos)]
temp_E_mc = E_mc_now - sum(p) - E_move[u]
temp_E = [E_now[j] + p[j] - (time_move[u] + tmp[u]) * e[j] for j, _ in enumerate(node_pos)]
if min(temp_E) < 0:
isStop = True
index = u
break
else:
x[u] = tmp[u]
E_mc_now = temp_E_mc
E_now = temp_E
gen.append(x)
if not isStop:
E_mc_now = E_mc_now - E_move[-1]
E_now = [E_now[j] - time_move[-1] * e[j] for j, _ in enumerate(node_pos)]
else:
break
remain = min([E_now[j] / e[j] for j, _ in enumerate(node_pos)])
nbRound = len(T)
life_time = sum(T[:nbRound]) + sum([sum(gen[nbGen]) for nbGen in range(nbRound - 1)]) + (nbRound - 1) * sum(time_move)
life_time += T[-1] + sum(gen[-1][:index]) + sum(time_move[:index]) + remain
return life_time, T, gen, remain
def get_life_time(T, gen, remain):
life_time = 0.0
for index in range(len(T)):
life_time += T[index]
for id, current in enumerate(gen[index]):
if id == 0:
time = time_move[-1][current[0]]
else:
last = gen[index][id - 1]
time = time_move[last[0]][current[0]]
life_time += time + current[1]
if index != len(T) - 1:
u_last, _ = gen[index][-1]
life_time += time_move[-1][u_last]
life_time += remain
return life_time
# main task
getData(file_name="data.csv", index=0)
charge = [[charge(node, pos) for u, pos in enumerate(charge_pos)] for j, node in enumerate(node_pos)]
# do chenh lech nang luong cua moi sensor j khi MC dung sac tai vi tri u
delta = [[charge[j][u] - e[j] for u, _ in enumerate(charge_pos)] for j, _ in enumerate(node_pos)]
life_time, T, gen, remain = getRound()
print life_time
print T[0], T[-1]
print remain
print gen[0]
print gen[-1]