-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGreedyIgnoreZero.py
381 lines (339 loc) · 13.4 KB
/
GreedyIgnoreZero.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import math
import random
from operator import itemgetter
import copy
import pandas as pd
from ast import literal_eval
from sklearn import linear_model
from pulp import *
import csv
import time as tm
node_pos = [(10, 10), (30, 30), (50, 50), (70, 70), (90, 90),
(10, 30), (30, 10), (30, 50), (50, 30), (50, 70)]
charge_pos = [(10, 50), (90, 50)]
time_move = [1.019803902718557, 1.6, 2.0591260281974]
E = [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]
e = [0.2, 0.3, 0.3, 0.5, 0.6, 0.2, 0.6, 0.4, 0.6, 0.3]
numNode = len(node_pos)
numCharge = len(charge_pos)
E_mc = 5 # nang luong khoi tao cua MC
e_mc = 1 # cong suat sac moi giay
E_max = 10.0 # nang luong toi da
e_move = 0.1 # nang luong tieu thu moi giay cho viec di chuyen
E_move = [e_move * time_move_i for time_move_i in time_move] # nang luong tieu thu de di chuyen toi moi charge position
chargeRange = 10 ** 10
velocity = 0.0
alpha = 600
beta = 30
charge = []
delta = [[0 for u, _ in enumerate(charge_pos)] for j, _ in enumerate(node_pos)]
def getData(file_name="data.csv", index=0):
global node_pos
global numNode
global E
global e
global charge_pos
global numCharge
global time_move
global E_mc
global e_mc
global E_max
global e_move
global E_move
global alpha
global beta
global velocity
df = pd.read_csv(file_name)
node_pos = list(literal_eval(df.node_pos[index]))
numNode = len(node_pos)
E = [df.energy[index] for _ in node_pos]
e = map(float, df.e[index].split(","))
charge_pos = list(literal_eval(df.charge_pos[index]))
numCharge = len(charge_pos)
velocity = df.velocity[index]
E_mc = df.E_mc[index]
E_max = df.E_max[index]
e_mc = df.e_mc[index]
e_move = df.e_move[index]
alpha = df.alpha[index]
beta = df.beta[index]
charge_extend = []
charge_extend.extend(charge_pos)
charge_extend.append((0, 0))
time_move = [[distance(pos1, pos2) / velocity for pos2 in charge_extend] for pos1 in charge_extend]
tmp = [time_move[i][i + 1] * e_move for i in range(len(time_move) - 1)]
E_move = [time_move[-1][0] * e_move]
E_move.extend(tmp)
def distance(node1, node2):
return math.sqrt((node1[0] - node2[0]) * (node1[0] - node2[0])
+ (node1[1] - node2[1]) * (node1[1] - node2[1]))
def charging(node, charge):
d = distance(node, charge)
if d > chargeRange:
return 0
else:
return alpha / ((d + beta) ** 2)
def getWeightLinearRegression():
regr = linear_model.LinearRegression(fit_intercept=False)
regr.fit(delta, e)
w = regr.coef_
if sum(w):
x = [item / sum(w) for item in w]
else:
x = 0
return w
def getWeightLinearPrograming1():
w = 0 # bien return
model = LpProblem("Charge", LpMinimize)
x = LpVariable.matrix("x", list(range(numCharge)), 0, None, LpContinuous)
t = LpVariable.matrix("t", list(range(numNode)), 0, None, LpContinuous)
for j, _ in enumerate(node_pos):
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - e[j] <= t[j]
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - e[j] >= -t[j]
model += lpSum(t)
status = model.solve()
if status == 1:
valueX = [value(item) for item in x]
if sum(valueX):
w = [item / sum(valueX) for item in valueX]
else:
w = [1.0 / len(charge_pos) for _ in charge_pos]
else:
print "khong giai duoc bai toan LP"
print w
return w
def getWeightLinearPrograming2(E_now):
w = 0 # bien return
model = LpProblem("Charge", LpMinimize)
x = LpVariable.matrix("x", list(range(numCharge)), 0, None, LpContinuous)
t = LpVariable.matrix("t", list(range(numNode)), 0, None, LpContinuous)
for j, _ in enumerate(node_pos):
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - e[j] / E_now[j] <= t[j]
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - e[j] / E_now[j] >= -t[j]
model += lpSum(t)
status = model.solve()
if status == 1:
valueX = [value(item) for item in x]
if sum(valueX):
w = [item / sum(valueX) for item in valueX]
else:
w = [1.0 / len(charge_pos) for _ in charge_pos]
else:
print "khong giai duoc bai toan LP"
return w
def getWeightLinearPrograming3(E_now, gamma):
w = 0 # bien return
model = LpProblem("Charge", LpMinimize)
x = LpVariable.matrix("x", list(range(numCharge)), 0, None, LpContinuous)
t = LpVariable.matrix("t", list(range(numNode)), 0, None, LpContinuous)
for j, _ in enumerate(node_pos):
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - gamma * (e[j] / sum(e)) + (
1 - gamma) * (E_now[j] / sum(E_now)) <= t[j]
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - gamma * (e[j] / sum(e)) + (
1 - gamma) * (E_now[j] / sum(E_now)) >= -t[j]
model += lpSum(t)
status = model.solve()
if status == 1:
valueX = [value(item) for item in x]
if sum(valueX):
w = [item / sum(valueX) for item in valueX]
else:
w = [1.0 / len(charge_pos) for _ in charge_pos]
else:
print "khong giai duoc bai toan LP"
return w
def getWeightLinearPrograming4(E_now):
w = 0 # bien return
model = LpProblem("Charge", LpMinimize)
x = LpVariable.matrix("x", list(range(numCharge)), 0, None, LpContinuous)
t = LpVariable.matrix("t", list(range(numNode)), 0, None, LpContinuous)
for j, _ in enumerate(node_pos):
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - (e[j] / sum(e)) / (
E_now[j] / sum(E_now)) <= t[j]
model += lpSum([x[u] * delta[j][u] for u, _ in enumerate(charge_pos)]) - (e[j] / sum(e)) / (
E_now[j] / sum(E_now)) >= -t[j]
model += lpSum(t)
status = model.solve()
if status == 1:
valueX = [value(item) for item in x]
if sum(valueX):
w = [item / sum(valueX) for item in valueX]
else:
w = [1.0 / len(charge_pos) for _ in charge_pos]
else:
print "khong giai duoc bai toan LP"
# print w
return w
def getCharge(E_mc_now, w):
t = (E_mc_now - sum(E_move)) / sum(
[w[u] * sum([charge[j][u] for j, _ in enumerate(node_pos)]) for u, _ in enumerate(charge_pos)])
x = [t * w[u] for u, _ in enumerate(charge_pos)]
return x
def getRound():
E_now = E
E_mc_now = E_mc
gen = []
T = []
remain = 0
life_time = 0
isStop = False
index = 0
t = 0
while True:
# print "circle = ", t, "energy = ", min(E_now), max(E_now)
t += 1
# temp_T, temp_E: cac gia tri nang luong cua sensor va MC trong truong hop T thoa man
temp_T = (E_max - E_mc_now) / e_mc
temp_E = [E_now[j] - temp_T * e[j] for j, _ in enumerate(node_pos)]
# w = getWeightLinearPrograming1()
# w = getWeightLinearPrograming2(E_now)
w = getWeightLinearPrograming3(E_now, 0.5)
# w = getWeightLinearPrograming4(E_now)
# print w
tmp = getCharge(E_mc_now + temp_T * e_mc, w)
x_not_zero = [(index, item) for index, item in enumerate(tmp) if item > 0]
u_first, _ = x_not_zero[0]
eNode = min([temp_E[j] - time_move[-1][u_first] * e[j] for j, _ in enumerate(node_pos)])
print x_not_zero
if eNode < 0:
break
else:
T.append(temp_T)
E_mc_now = E_mc_now + temp_T * e_mc
E_now = temp_E
x = []
for index, current in enumerate(x_not_zero):
# time: thoi gian di chuyen tu vi tri sac truoc do den vi tri hien tai
# current[0]: id cua vi tri sac
# current[1]: thoi gian dung sac
u, xu = current
if index == 0:
time = time_move[-1][u]
else:
last = x_not_zero[index - 1]
time = time_move[last[0]][u]
# print min(E_now)
eNode = min([E_now[j] - time * e[j] for j, _ in enumerate(node_pos)])
if eNode < 0:
isStop = True
break
# print eNode
p = [min(charge[j][u] * xu, E[j] - E_now[j] + (time + xu) * e[j]) for j, node in enumerate(node_pos)]
temp_E_mc = E_mc_now - sum(p) - time * e_move
temp_E = [E_now[j] + p[j] - (time + xu) * e[j] for j, _ in enumerate(node_pos)]
# print max(p), len(p)
# print min(temp_E)
if min(temp_E) < 0:
isStop = True
break
else:
x.append(current)
E_mc_now = temp_E_mc
E_now = temp_E
gen.append(x)
if not isStop:
u_last, _ = x_not_zero[-1]
E_mc_now = E_mc_now - time_move[-1][u_last] * e_move
E_now = [E_now[j] - time_move[-1][u_last] * e[j] for j, _ in enumerate(node_pos)]
else:
break
remain = min([E_now[j] / e[j] for j, _ in enumerate(node_pos)])
life_time = get_life_time(T, gen, remain)
return life_time, T, gen, remain
def get_life_time(T, gen, remain):
life_time = 0.0
for index in range(len(T)):
life_time += T[index]
for id, current in enumerate(gen[index]):
if id == 0:
time = time_move[-1][current[0]]
else:
last = gen[index][id - 1]
time = time_move[last[0]][current[0]]
life_time += time + current[1]
if index != len(T) - 1:
u_last, _ = gen[index][-1]
life_time += time_move[-1][u_last]
life_time += remain
return life_time
def countNodeDead(E_now):
temp = [item for item in E_now if item > 0]
return len(temp)
def getNodeDead():
E_now = E
E_mc_now = E_mc
list_node_dead = []
time_label = 0
t = 0
while countNodeDead(E_now) > 0.91 * numNode:
# print "circle = ", t, "energy = ", min(E_now), max(E_now)
t += 1
# temp_T, temp_E: cac gia tri nang luong cua sensor va MC trong truong hop T thoa man
T = (E_max - E_mc_now) / e_mc
E_mc_now = E_mc_now + T * e_mc
E_now = [E_now[j] - T * e[j] if E_now[j] - T * e[j] > 0 else 0 for j, _ in enumerate(node_pos)]
time_label = time_label + T
# w = getWeightLinearPrograming1()
# w = getWeightLinearPrograming2(E_now)
w = getWeightLinearPrograming3(E_now, 0.2)
# w = getWeightLinearPrograming4(E_now)
tmp = getCharge(E_mc_now, w)
x_not_zero = [(index, item) for index, item in enumerate(tmp) if item > 0]
if not x_not_zero:
break
for index, current in enumerate(x_not_zero):
u, xu = current
if index == 0:
time = time_move[-1][u]
else:
last = x_not_zero[index - 1]
time = time_move[last[0]][u]
p = [min(charge[j][u] * xu, E[j] - E_now[j] + (time + xu) * e[j]) if E_now[j] - time * e[j] > 0 else 0 for
j, node in enumerate(node_pos)]
E_now = [E_now[j] + p[j] - (time + xu) * e[j] if E_now[j] - time * e[j] > 0 else 0 for j, node in
enumerate(node_pos)]
E_now = [E_now[j] if E_now[j] > 0 else 0 for j, node in enumerate(node_pos)]
E_mc_now = E_mc_now - sum(p) - time * e_move
time_label = time_label + time + xu
u_last, _ = x_not_zero[-1]
E_mc_now = E_mc_now - time_move[-1][u_last] * e_move
E_now = [E_now[j] - time_move[-1][u_last] * e[j] for j, _ in enumerate(node_pos)]
E_now = [E_now[j] if E_now[j] > 0 else 0 for j, _ in enumerate(node_pos)]
time_label = time_label + time_move[-1][u_last]
print time_label, numNode - countNodeDead(E_now)
list_node_dead.append((time_label, numNode - countNodeDead(E_now)))
return list_node_dead
# main task
index = 0
f = open("Greedy/Greedy_LP3_lifetime.csv", mode="w")
header = ["Bo Du Lieu", "time", "Co Sac", "Khong Sac"]
writer = csv.DictWriter(f, fieldnames=header)
writer.writeheader()
while index < 1:
start_time = tm.time()
print "Data Set ", index
getData(file_name="Data_Model3_Journal/thaydoisodiemsac.csv", index=index)
charge = [[charging(node, pos) for u, pos in enumerate(charge_pos)] for j, node in enumerate(node_pos)]
# do chenh lech nang luong cua moi sensor j khi MC dung sac tai vi tri u
delta = [[charge[j][u] - e[j] for u, _ in enumerate(charge_pos)] for j, _ in enumerate(node_pos)]
life_time, T, gen, remain = getRound()
end_time = tm.time()
row = {"Bo Du Lieu": "No." + str(index), "time": end_time - start_time, "Co Sac": life_time,
"Khong Sac": min([E[j] / e[j] for j, _ in enumerate(node_pos)])}
writer.writerow(row)
print "Done Data Set ", index
# list_node_dead = getNodeDead()
# file_name = "Greedy/DataSet" + str(index) + ".csv"
# g = open(file_name, mode="w")
# g_header = ["time", "numNode"]
# g_writer = csv.DictWriter(g, fieldnames=g_header)
# g_writer.writeheader()
# for item in list_node_dead:
# g_row = {}
# g_row["time"] = item[0]
# g_row["numNode"] = item[1]
# g_writer.writerow(g_row)
# g.close()
index = index + 1
f.close()
print "Done All"