-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
88 lines (71 loc) · 2.72 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import argparse
import os
import time
import cv2
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import dataset_HSI as dataset
from models.modeling import VisionTransformer, get_config
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="DataStorage/model-best")
args = parser.parse_args()
model_path = args.model_path
save_path = "DataStorage/test_result"
class Test(object):
def __init__(self, Dataset, Network, Path, snapshot):
## dataset
self.cfg = Dataset.Config(datapath=Path, snapshot=snapshot, mode="test")
config = get_config()
self.net = Network(config, img_size=352)
self.net.cuda()
model_dict = self.net.state_dict()
pretrained_dict = torch.load(
self.cfg.snapshot, map_location=torch.device("cpu")
)
pretrained_dict = {
k.replace("module.", ""): v
for k, v in pretrained_dict.items()
if (k.replace("module.", "") in model_dict)
}
# check unloaded weights
for k, v in model_dict.items():
if k in pretrained_dict.keys():
pass
else:
print("miss keys in pretrained_dict: {}".format(k))
model_dict.update(pretrained_dict)
self.net.load_state_dict(model_dict)
self.net.train(False)
self.data = Dataset.Data(self.cfg)
self.loader = DataLoader(self.data, batch_size=1, shuffle=False, num_workers=0)
def save(self):
with torch.no_grad():
total_time = []
for image, gt, spec, (H, W), name in self.loader:
image, shape = image.cuda().float(), (H, W)
image = F.interpolate(image, size=(352, 352), mode="bilinear", align_corners=True)
spec = spec.cuda().float()
spec = spec.repeat([1, 3, 1, 1])
gt = gt.cuda().float()
# out, refine_map, e1, e2 = net(image, spec_sal)
start = time.time()
out, _, _, vis = self.net(image, spec)
end = time.time()
total_time.append(end - start)
pred = torch.sigmoid(out)
pred = F.interpolate(pred, (H[0], W[0]), mode="bilinear", align_corners=True)
head = save_path
for i in range(pred.shape[0]):
cv2.imwrite(
head + "/" + name[i].split(".")[0] + ".jpg", pred[i, 0].cpu().numpy() * 255
)
print("average fps: ", len(total_time) / sum(total_time))
if __name__ == "__main__":
t = Test(
dataset,
VisionTransformer,
"./Data",
model_path,
)
t.save()