-
Notifications
You must be signed in to change notification settings - Fork 3
/
pentade.py
491 lines (431 loc) · 17.8 KB
/
pentade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import timeit
import subprocess
import random
import numpy as np
import scipy as sp
import math
import re
import chess
from operator import itemgetter
from chess import uci
from chess import Board
from chess import Move
from chess import syzygy
from numpy import sqrt
from scipy.stats import chi2
from scipy.stats import norm
from statistics import median
Engines = [
{'file': 'C:\\msys2\\home\\lanto\\material-tune\\stockfish.exe', 'name': 'test'},
{'file': 'C:\\msys2\\home\\lanto\\material-tune\\stockfish.exe', 'name': 'base'}
]
Draw = {'movenumber': 40, 'movecount': 8, 'score': 20}
Resign = {'movecount': 3, 'score': 400}
population_size = 40
iterations = 200
dynamic_rate = 5
Openings = 'C:\\Cutechess\\2moves.epd'
Games = 10
UseEngine = False
Syzygy = 'C:\\Winboard\\Syzygy'
ParametersFile = 'quadratic.txt'
LogFile = 'tuning.txt'
DynamicConstraints = False
Options = {'Clear Hash': True, 'Hash': 16, 'SyzygyPath': Syzygy,
'SyzygyProbeDepth': 10, 'Syzygy50MoveRule': True, 'SyzygyProbeLimit': 5}
# Preparatory phase
# takes parameters from the engine
def getPars():
sf = subprocess.Popen(Engines[0]['file'], stdin=subprocess.PIPE, stdout=subprocess.PIPE,
stderr=subprocess.STDOUT, universal_newlines=True, bufsize=1)
sf.stdin.write('isready' + '\n')
pars = []
outline = []
while outline is not '':
outline = sf.stdout.readline().rstrip()
if not (outline.startswith('Stockfish ') or outline.startswith('Unknown ') or outline == ''):
pars.append(outline.split(','))
sf.terminate()
sf.wait()
return pars
# takes parameters from file that is copied from engine output
def get_pars():
params = []
f = open(ParametersFile)
lines = f.read().split('\n')
if lines[-1] == '':
lines.remove('')
for p in lines:
params.append(p.split(','))
return params
if UseEngine:
Pars = getPars()
else:
Pars = get_pars()
# openings
def get_fens():
fens = []
lines = open(Openings).read().splitlines()
for i in range(0, Games, 1):
fen = random.choice(lines)
fens.append(fen)
# print(fens)
return fens
def shuffled(x):
y = x[:]
random.shuffle(y)
return y
def init_engines(pars):
info_handlers = []
uciEngines = []
for e in Engines:
uciEngines.append(uci.popen_engine(e['file']))
for e, u in enumerate(uciEngines):
u.uci()
u.setoption(Options)
u.setoption(pars[e])
u.isready()
return uciEngines
class DifferentialEvolution():
def __init__(self, F=0.5, CR=0.9, JR=None):
self.params = Pars
self.nameArray = [str(par[0]) for par in Pars]
self.parsArray = [int(par[1]) for par in Pars]
self.bounds = [(int(p[2]), int(p[3])) for p in Pars]
self.lbounds = [int(l) for l, h in self.bounds]
self.hbounds = [int(h) for l, h in self.bounds]
self.n_parameters = len(self.nameArray)
self.f = F
self.cr = CR
self.jr = JR
self.current = self.initialize()
self.population = [[00.00, [0, 0, 0, 0, 0], 0, p]
for p in self.current]
self.training = (np.array([self.lbounds, ]*population_size) +
np.array([self.hbounds, ]*population_size) - np.array(self.current)).tolist()
self.trial = [[00.00, [0, 0, 0, 0, 0], 0, p] for p in self.training]
self.history = self.population
self.current_matrix = []
self.diagonal = []
# self.engines = init_engines()
def getBounds(self):
return [(int(p[2]), int(p[3])) for p in Pars]
def initialize(self):
initialized = []
for i in range(population_size):
randArray = [random.randint(b[0], b[1]) for b in self.bounds]
initialized.append(randArray)
return initialized
# Evaluation
def evaluate(self):
num = 0
population = []
fens = get_fens()
for curr, tri in zip(shuffled(self.population), shuffled(self.trial)):
current = dict(zip(self.nameArray, curr[3]))
trial = dict(zip(self.nameArray, tri[3]))
result = []
with syzygy.open_tablebases(Syzygy) as tablebases:
for fen in fens:
result1 = self.trans_result(self.launchSf(
[current, trial], fen, tablebases,))
result2 = self.trans_result(self.launchSf(
[trial, current], fen, tablebases,))
result.append(result1 + result2)
pentares = self.pentanomial(result)
# curr[1] = (np.array(curr[1]) + np.array(pentares)).tolist() # non-Markovian process
# tri[1] = (np.array(tri[1]) + np.array(pentares[::-1])).tolist()
curr[1] = pentares # Markov process
tri[1] = pentares[::-1]
curr[0] = float(self.calc_los(curr[1]))
tri[0] = float(self.calc_los(tri[1]))
num += 1
print('{0:3d} {1:7.2f} | {2:7.2f}'.format(num, curr[0], tri[0]))
curr[2] += 2 * Games
tri[2] += 2 * Games
# Selection
if curr[0] < tri[0]:
population.append(tri)
else:
population.append(curr)
self.population = sorted(population, key=itemgetter(0))
self.history = self.updateHistory()
# print(self.population)
for member in self.history[-5:][::-1]:
print('{0:6.2f}, {1!s}, {2:3d}, {3!s}'.format(member[0],
member[1], member[2], member[3]))
# with open('tuning1.txt', 'a') as f:
# f.write(str(self.population) + '\n' + str(self.history) + '\n')
# History update
def updateHistory(self):
# start = timeit.default_timer()
for popu in self.population:
if str(popu[3]) not in str(self.history):
self.history.append(popu)
else:
# for hist in self.history:
# if str(popu[3]) in str(hist[3]):
# if popu[2] > hist[2]:
# hist = popu # 22.45 +/- 3.1 ms
self.history = [popu if (str(x[3]) in str(popu[3])
and x[2] < popu[2]) else x for x in self.history] # 10.17 +/- 0.7 ms
# stop = timeit.default_timer()
# print(stop - start)
self.history = sorted(
self.history, key=itemgetter(0))[-population_size:]
return self.history
def trans_result(self, score):
return {'1-0': 2, '1/2-1/2': 1, '0-1': 0}[score]
def pentanomial(self, result):
pentares = []
for i in range(0, 5):
pentares.append(result.count(i))
return pentares
def calc_los(self, pentares):
sumi, sumi2 = 0, 0
for i in range(0, 5):
res = 0.5 * i
N = sum(pentares)
sumi += pentares[i] * res / N
sumi2 += pentares[i] * res * res / N
sigma = math.sqrt(sumi2 - sumi * sumi)
try:
t = (sumi - 1) / sigma * 100
except ZeroDivisionError:
t = (sumi - 1) * 1000
# los = norm.cdf(t) * 100
return '{0:.2f}'.format(round(t, 2))
# Game playing
def launchSf(self, pars, fen, tablebases,):
try:
board = Board(fen, chess960=False)
except BaseException:
try:
board.set_epd(fen)
except BaseException:
board = Board(chess960=False)
wdl = None
drawPlyCnt, resignPlyCnt = 0, 0
whiteIdx = 1
turnIdx = whiteIdx ^ (board.turn == chess.BLACK)
uciEngines = init_engines(pars)
info_handler = uci.InfoHandler()
for u in uciEngines:
u.info_handlers.append(info_handler)
u.ucinewgame()
while (not board.is_game_over(claim_draw=True)):
if board.castling_rights == 0:
# if len(re.findall(r"[rnbqkpRNBQKP]", board.board_fen())) < 6:
# wdl = tablebases.probe_wdl(board)
# if wdl is not None:
# break # ~ 1.5 ms
try:
wdl = tablebases.probe_wdl(board)
if wdl is not None:
break
except KeyError:
pass # < 1 ms
uciEngines[turnIdx].position(board)
bestmove, score = uciEngines[turnIdx].go(depth=7)
score = info_handler.info["score"][1].cp
# print(score)
if score is not None:
# Resign adjudication
if abs(score) >= Resign['score']:
resignPlyCnt += 1
if resignPlyCnt >= 2 * Resign['movecount']:
break
else:
resignPlyCnt = 0
# Draw adjudication
if abs(score) <= Draw['score'] and board.halfmove_clock > 0:
drawPlyCnt += 1
if drawPlyCnt >= 2 * Draw['movecount'] \
and board.fullmove_number >= Draw['movenumber']:
break
else:
drawPlyCnt = 0
else:
# Disable adjudication over mate scores
drawPlyCnt, resignPlyCnt = 0, 0
board.push(bestmove)
turnIdx ^= 1
result = board.result(True)
if result == '*':
if resignPlyCnt >= 2 * Resign['movecount']:
if score > 0:
result = '1-0' if board.turn == chess.WHITE else '0-1'
else:
result = '0-1' if board.turn == chess.WHITE else '1-0'
elif wdl is not None:
if wdl <= -1:
result = '1-0' if board.turn == chess.WHITE else '0-1'
elif wdl >= 1:
result = '0-1' if board.turn == chess.WHITE else '1-0'
else:
result = '1/2-1/2'
# print('tb draw')
else:
result = '1/2-1/2'
# print('draw')
# print(board.fen())
# print(re.findall(r"[rnbqkpRNBQKP]", board.board_fen()))
for u in uciEngines:
u.quit(0)
return result
exit(0)
# Mutation
def mutate(self):
self.trial = []
best_individuum = self.history[-1]
if self.f is None:
use_f = random.uniform(0.5, 1.5)
else:
use_f = self.f
for curr in shuffled(self.population):
indices = random.sample(range(0, population_size), 2)
r1 = best_individuum
r2 = self.population[indices[0]]
r3 = self.population[indices[1]]
mutant = np.array(r1[3]) + use_f * \
(np.array(r2[3]) - np.array(r3[3]))
# Crossover
for j in range(0, self.n_parameters):
if random.uniform(0, 1) <= self.cr or j == random.randrange(0, self.n_parameters):
mutant[j] = mutant[j]
else:
mutant[j] = curr[3][j]
if mutant[j] < self.lbounds[j]:
mutant[j] = 2*self.lbounds[j] - mutant[j]
if mutant[j] > self.hbounds[j]:
mutant[j] = 2*self.hbounds[j] - mutant[j]
# print(mutant)
self.trial.append([00.00, [0, 0, 0, 0, 0], 0,
mutant.astype(int).tolist()])
# History injection
for hist in self.history[-int(population_size / 5):]:
if str(hist[3]) not in str(self.population) and str(hist[3]) not in str(self.trial):
j_rand = random.randrange(0, population_size)
self.trial[j_rand] = hist
# Dynamic opposition
self.current = [p[3] for p in self.population]
self.current_matrix = np.append(self.current_matrix, self.current)
if self.jr is not None and random.uniform(0, 1) < self.jr:
self.current_matrix = np.array(self.current)
self.stats_analysis()
elif self.jr is None and (g+1) % dynamic_rate == 0 and g != 0:
self.current_matrix = self.current_matrix.reshape((dynamic_rate)*population_size,
self.n_parameters)
self.stats_analysis()
# Statistical analysis and output
def stats_analysis(self):
self.training = np.array([self.lbounds, ]*population_size) + \
np.array([self.hbounds, ]*population_size) - \
np.array(self.current[:])
self.trial = [[00.00, [0, 0, 0, 0, 0], 0, p.tolist()]
for p in self.training]
covar = np.round(np.cov(self.current_matrix.T), 2)
means = np.mean(self.current_matrix, axis=0).astype(int)
medians = np.median(self.current_matrix, axis=0).astype(int)
if DynamicConstraints:
self.lbounds = np.percentile(
self.current_matrix, 5, axis=0).astype(int)
self.hbounds = np.percentile(
self.current_matrix, 95, axis=0).astype(int)
if self.jr is None:
if self.n_parameters > 1:
self.diagonal = covar.diagonal()
sum_variations = sum(self.diagonal)
coeff_var = [0.0 if abs(q) == 0.0 else sqrt(p) / abs(q) for p,
q in zip(self.diagonal, means)]
self.print_save(medians, sum_variations, coeff_var)
else:
self.diagonal = np.round(
np.var(self.current_matrix.T), 2).tolist()
sum_variations = self.diagonal
if abs(means) != 0:
coeff_var = list(sqrt(sum_variations)/means)
else:
coeff_var = list(sqrt(sum_variations))
# np.set_printoptions(threshold=np.inf)
# np.savetxt('stats.txt', self.current_matrix.T, delimiter=',')
# with open('stats.txt', 'a') as f:
# f.write(str(self.current_matrix.T))
# self.print_save(medians, sum_variations, coeff_var)
self.current_matrix = []
## Formatting, printing and saving
def print_save(self, medians, sum_variations, coeff_var):
print('{0:.2f}'.format(sum_variations))
for i, name in enumerate(self.nameArray):
print('{0:22} {1:5d} {2:5d} {3:5d} {4:9.2f} {5:8.2%}'.format(name,
medians[i], self.lbounds[i], self.hbounds[i],
self.diagonal[i], coeff_var[i]))
with open(LogFile, 'a') as f:
f.write('{0:.2f}'.format(sum_variations) + '\n')
for member in self.history[-5:][::-1]:
f.write('{0:6.2f}, {1!s}, {2:3d}, {3!s}\n'.format(member[0],
member[1], member[2], member[3]))
for i, name in enumerate(self.nameArray):
f.write('{0:22} {1:5d} {2:5d} {3:5d} {4:9.2f} {5:8.2%}'.format(name,
medians[i], self.lbounds[i], self.hbounds[i],
self.diagonal[i], coeff_var[i]) + '\n')
with open(ParametersFile, 'w') as f:
for i, name in enumerate(self.nameArray):
f.write('{0},{1},{2},{3}'.format(name,
medians[i], self.lbounds[i], self.hbounds[i]) + '\n')
if __name__ == '__main__':
de = DifferentialEvolution()
g = 0
while g < iterations or sum(de.diagonal) < 1.0:
de.evaluate()
de.mutate()
g += 1
exit(0)
'''
ti = tolerance_interval(sum_variations)
ci = self.confidence_interval(sum_variations)
self.lbounds = (means - ci).tolist()
self.hbounds = (means + ci).tolist()
lbounds = np.amin(np.array(self.current_matrix), axis=0).astype(int)
hbounds = np.amax(np.array(self.current_matrix), axis=0).astype(int)
self.lbounds = list(map(max, lbounds, self.lbounds))
self.hbounds = list(map(min, hbounds, self.hbounds))
intervals = [tolerance_interval(x) for x in zip(*self.current_matrix)]
self.lbounds = (means - ci).tolist()
self.hbounds = (means + ci).tolist()
print(str(medians) + '\n' + str(self.lbounds) + '\n' + str(self.hbounds))
print(sum_variations)
self.diagonal = [float('{0:.2f}'.format(x)) for x in self.diagonal]
print(self.diagonal)
coeff = [float('{0:.2f}'.format(x)) for x in coeff_var]
print(coeff)
with open('tuning1.txt', 'a') as f:
f.write(str(covar) + '\n' + str(sum_variations) + \
'\n' + str(medians) + '\n' + str(self.lbounds) + '\n' + \
str(self.hbounds) + '\n' + str(self.diagonal) + '\n' + str(coeff) +'\n')
def tolerance_interval(sum_variations):
n = population_size * dynamic_rate
dof = n - 1
# specify data coverage
prop = 0.999
prop_inv = (1.0 - prop) / 2.0
gauss_critical = norm.isf(prop_inv)
# print('Gaussian critical value: %.3f (coverage=%d%%)' % (gauss_critical, prop*100))
# specify confidence
prob = 0.999
chi_critical = chi2.isf(q=prob, df=dof)
# print('Chi-Squared critical value: %.3f (prob=%d%%, dof=%d)' % (chi_critical, prob*100, dof))
# tolerance
tolerance = sqrt((dof * (1 + (1/n)) * gauss_critical**2) / chi_critical)
tolerance_interval = tolerance * math.sqrt(sum_variations)
return tolerance_interval
def confidence_interval(self, sum_variations):
n = population_size * dynamic_rate
if self.n_parameters > 1:
confidence_interval = list(map(lambda x: (math.sqrt(x) / math.sqrt(n) * \
sp.stats.t._ppf((1+0.9999)/2., n-1)).astype(int), self.diagonal))
else:
confidence_interval = (math.sqrt(sum_variations) / n) * \
sp.stats.t._ppf((1+0.99)/2., n-1).astype(int)
return confidence_interval
'''