-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
109 lines (86 loc) · 3.19 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os
import sys
import time
import math
import torch
import torch.nn as nn
import torch.nn.init as init
import numpy as np
def get_mean_and_std(dataset):
'''Compute the mean and std value of dataset.'''
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2)
mean = torch.zeros(3)
std = torch.zeros(3)
print('==> Computing mean and std..')
for inputs, targets in dataloader:
for i in range(3):
mean[i] += inputs[:,i,:,:].mean()
std[i] += inputs[:,i,:,:].std()
mean.div_(len(dataset))
std.div_(len(dataset))
return mean, std
from collections import OrderedDict
import datetime
def save_path_formatter(args):
args_dict = vars(args)
data_folder_name = args_dict['dataset']
folder_string = [data_folder_name]
key_map = OrderedDict()
key_map['arch'] =''
key_map['epochs'] = 'ep'
key_map['optimizer']=''
key_map['lr']=''
key_map['lr_scheduler']=''
key_map['batch_size']='bs'
#key_map['n_iter']='it'
#key_map['seed']='seed'
key_map['weight_decay']='wd'
key_map['batchnorm'] = 'bn'
key_map['deconv']='deconv'
key_map['delinear']='delinear'
key_map['block']='b'
key_map['stride']='stride'
key_map['deconv_iter'] = 'it'
key_map['eps'] = 'eps'
key_map['bias'] = 'bias'
key_map['block_fc']='bfc'
#key_map['freeze']='freeze'
for key, key2 in key_map.items():
value = args_dict[key]
if key2 != '':
folder_string.append('{}.{}'.format(key2, value))
else:
folder_string.append('{}'.format(value))
save_path = ','.join(folder_string)
timestamp = datetime.datetime.now().strftime("%m-%d-%H.%M")
return os.path.join('checkpoints',save_path,timestamp).replace("\\","/")
def tensor2array(tensor, max_value=None, colormap='rainbow'):
if max_value is None:
tensor=(tensor-tensor.min())/(tensor.max()-tensor.min()+1e-6)
max_value = tensor.max().item()
if tensor.ndimension() == 2 or tensor.size(0) == 1:
try:
import cv2
if cv2.__version__.startswith('3'):
color_cvt = cv2.COLOR_BGR2RGB
else: # 2.4
color_cvt = cv2.cv.CV_BGR2RGB
if colormap == 'rainbow':
colormap = cv2.COLORMAP_RAINBOW
elif colormap == 'bone':
colormap = cv2.COLORMAP_BONE
array = (tensor.squeeze().numpy()*255./max_value).clip(0, 255).astype(np.uint8)
colored_array = cv2.applyColorMap(array, colormap)
array = cv2.cvtColor(colored_array, color_cvt).astype(np.float32)/255
except ImportError:
if tensor.ndimension() == 2:
tensor.unsqueeze_(2)
array = (tensor.expand(tensor.size(0), tensor.size(1), 3).numpy()/max_value).clip(0,1)
elif tensor.ndimension() == 3:
assert(tensor.size(0) == 3)
array = 0.5 + tensor.numpy().transpose(1, 2, 0)*0.5
#for tensorboardx 1.4
#array=array.transpose(2,0,1)
return array
def targets_to_one_hot(targets,num_classes):
return torch.zeros(targets.shape[0], num_classes,device=targets.device).scatter_(1, targets.view(-1, 1), 1)