-
Notifications
You must be signed in to change notification settings - Fork 0
/
cnn_image_classification.py
102 lines (86 loc) · 3.47 KB
/
cnn_image_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
# Check for GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Define transformations for training and test datasets
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
# Load CIFAR-10 training and test sets
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
# Define the CNN model
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 8 * 8, 512)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 64 * 8 * 8)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
model = CNN().to(device) # Move model to GPU if available
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
def train(model, trainloader, optimizer, criterion, epochs=10):
model.train() # Set the model to training mode
for epoch in range(epochs):
running_loss = 0.0
for i, (inputs, labels) in enumerate(trainloader):
inputs, labels = inputs.to(device), labels.to(device) # Move to GPU if available
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99: # Print every 100 batches
print(f'Epoch {epoch+1}, Batch {i+1}, Loss: {running_loss / 100:.3f}')
running_loss = 0.0
train(model, trainloader, optimizer, criterion, epochs=10)
def evaluate(model, testloader):
model.eval() # Set the model to evaluation mode
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device) # Move to GPU if available
outputs = model(images)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy: {100 * correct / total:.2f}%')
evaluate(model, testloader)
# Save the model after training
torch.save(model.state_dict(), 'cnn_cifar10.pth')
print("Model saved successfully!")
def imshow(img):
img = img / 2 + 0.5 # Unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
dataiter = iter(testloader)
images, labels = next(dataiter)
imshow(torchvision.utils.make_grid(images))