-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauto_keyboard.py
348 lines (275 loc) · 12.2 KB
/
auto_keyboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import cv2
import numpy as np
import pandas as pd
import math
import mediapipe as mp
from pynput.keyboard import Controller
from screeninfo import get_monitors
import tensorflow as tf
import pyautogui
from tensorflow.keras.models import load_model
class Store():
def __init__(self,pos,size,text):
self.pos=pos
self.size=size
self.text=text
def draw(img, storedVar):
for button in storedVar:
x, y = button.pos
w, h = button.size
cv2.rectangle(img, (x - w, y - h), (x + w, y + h), (0, 255, 0), thickness=2)
cv2.putText(img, button.text, (x-15, y+15), cv2.FONT_HERSHEY_PLAIN, 3, (255, 255, 255), 2)
return img
def draw_legend(img):
overlay = img.copy()
output = img.copy()
cv2.rectangle(overlay, (round(round(10/1280*width)), round(10/960*height)), (round(round(280/1280*width)), round(240/960*height)), (0, 0, 0), -1)
i = 0
for k, v in key_map.items():
cv2.putText(overlay, f'{k} : {v}', (20, 40+(i*35)), cv2.FONT_HERSHEY_PLAIN, 2, (0, 255, 0), 2)
i+=1
cv2.addWeighted(overlay, 0.7, output, 0.3, 0, output)
return output
def draw_input(img, text):
overlay = img.copy()
output = img.copy()
cv2.rectangle(overlay, (round(990/1280*width), round(900/960*height)), (round(1270/1280*width), round(950/960*height)), (0, 0, 0), -1)
cv2.putText(overlay, text, (round(1010/1280*width), round(935/960*height)), cv2.FONT_HERSHEY_PLAIN, 2, (0, 255, 0), 2)
cv2.addWeighted(overlay, 0.7, output, 0.3, 0, output)
return output
def vertical_symmetry(x, y, height):
"""
세로축 (Y축) 대칭 변환
:param x: 원본 X 좌표
:param y: 원본 Y 좌표
:param height: 대칭시킬 기준 선의 위치 (이미지의 높이)
:return: 세로축에 대해 대칭된 새로운 (x, y) 좌표
"""
new_y = height - y
return x, new_y
def horizontal_symmetry(x, y, width):
"""
가로축 (X축) 대칭 변환
:param x: 원본 X 좌표
:param y: 원본 Y 좌표
:param width: 대칭시킬 기준 선의 위치 (이미지의 너비)
:return: 가로축에 대해 대칭된 새로운 (x, y) 좌표
"""
new_x = width - x
return new_x, y
def drawROI(img, corners):
cpy = img.copy()
c1 = (192, 192, 255)
c2 = (128, 128, 255)
for pt in corners:
cv2.circle(cpy, tuple(pt.astype(int)), 25, c1, -1, cv2.LINE_AA)
cv2.line(cpy, tuple(corners[0].astype(int)), tuple(corners[1].astype(int)), c2, 2, cv2.LINE_AA)
cv2.line(cpy, tuple(corners[1].astype(int)), tuple(corners[2].astype(int)), c2, 2, cv2.LINE_AA)
cv2.line(cpy, tuple(corners[2].astype(int)), tuple(corners[3].astype(int)), c2, 2, cv2.LINE_AA)
cv2.line(cpy, tuple(corners[3].astype(int)), tuple(corners[0].astype(int)), c2, 2, cv2.LINE_AA)
disp = cv2.addWeighted(img, 0.3, cpy, 0.7, 0)
return disp
def onMouse(event, x, y, flags, param):
global srcQuad, dragSrc, ptOld, src
if event == cv2.EVENT_LBUTTONDOWN:
for i in range(4):
if cv2.norm(srcQuad[i] - (x, y)) < 25: # type: ignore
dragSrc[i] = True
ptOld = (x, y)
break
if event == cv2.EVENT_LBUTTONUP:
for i in range(4):
dragSrc[i] = False
if event == cv2.EVENT_MOUSEMOVE:
for i in range(4):
if dragSrc[i]:
dx = x - ptOld[0]
dy = y - ptOld[1]
srcQuad[i] += (dx, dy)
cpy = drawROI(src, srcQuad)
cv2.imshow(window_name, cpy)
ptOld = (x, y)
break
def convert_position(pt1, pt2, pers):
# 변환된 동차 좌표 계산
transformed_pt1 = np.dot(pers, pt1)
transformed_pt2 = np.dot(pers, pt2)
# 변환된 유클리드 좌표 계산 (동차좌표를 유클리드 좌표로 변환)
transformed_pt1 = transformed_pt1 / transformed_pt1[2]
transformed_x1, transformed_y1 = round(transformed_pt1[0]), round(transformed_pt1[1])
# 변환된 유클리드 좌표 계산 (동차좌표를 유클리드 좌표로 변환)
transformed_pt2 = transformed_pt2 / transformed_pt2[2]
transformed_x2, transformed_y2 = round(transformed_pt2[0]), round(transformed_pt2[1])
return (transformed_x1, transformed_y1), (transformed_x2, transformed_y2)
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
except RuntimeError as e:
print(e)
model = load_model("keyboard_model1")
print("가상 인터페이스 생성중...")
test_data = pd.read_hdf('1280x960.h5', 'df')
test_input = tf.convert_to_tensor(test_data, dtype=tf.float64)
pred = model.predict_classes(test_input)
pred = tf.reshape(pred, [1280, 960]).numpy()
test = np.full((960, 1280, 3), 255, np.uint8)
for y in range(960):
for x in range(1280):
test[y][x] = pred[x][y]
key_map = {"1":"1", "2":"2", "3":"3", "4":"LEFT", "5":"OK", "6":"RIGHT"}
keyboard = Controller()
'''
프로젝터 영역 자동 탐지
프로젝터로 빨강색 이미지를 출력하여 꼭짓점 탐지
'''
monitor1 = get_monitors()[1]
monitor2 = get_monitors()[2]
window_name = "Monitor"
window_name2 = "Projector"
cv2.namedWindow(window_name, cv2.WND_PROP_AUTOSIZE)
cv2.moveWindow(window_name, monitor1.x - 1, monitor1.y - 1)
cv2.namedWindow(window_name2, cv2.WND_PROP_FULLSCREEN)
cv2.moveWindow(window_name2, monitor2.x - 1, monitor2.y - 1)
cv2.setWindowProperty(window_name2, cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
red_image = (np.ones((960, 1280, 3)) * [0, 0, 255]).astype(np.uint8)
cv2.imshow(window_name2, red_image)
# 웹캠으로부터 입력 받기
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 960)
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
pers_corners = []
while True:
# 이미지를 불러옵니다.
_, img = cap.read()
# 이미지를 HSV로 변환
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 빨간색의 범위를 정의
lower_red_1 = np.array([0, 70, 50])
upper_red_1 = np.array([10, 255, 255])
lower_red_2 = np.array([170, 70, 50])
upper_red_2 = np.array([180, 255, 255])
mask1 = cv2.inRange(hsv, lower_red_1, upper_red_1)
mask2 = cv2.inRange(hsv, lower_red_2, upper_red_2)
mask = mask1 + mask2
# 테두리 찾기
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 가장 큰 테두리 찾기
if contours:
largest_contour = max(contours, key=cv2.contourArea)
# 꼭짓점 찾기
epsilon = 0.02 * cv2.arcLength(largest_contour, True)
approx_corners = cv2.approxPolyDP(largest_contour, epsilon, True)
# 근사화된 꼭짓점의 수가 4인 경우만 그림
if len(approx_corners) == 4:
for corner in approx_corners:
cv2.circle(img, tuple(corner[0]), 10, (0, 255, 0), -1) # 꼭짓점 그리기
pers_corners = approx_corners
break
'''
가상 키패드 그리는 부분
'''
StoredVar = []
img = np.full((960, 1280, 3), 0, np.uint8)
for index in range(1, model.output.shape[1]):
min_y = min(np.where(test==index)[0])
min_x = min(np.where(test==index)[1])
max_y = max(np.where(test==index)[0])
max_x = max(np.where(test==index)[1])
StoredVar.append(Store([round(((min_x+max_x)/2)/1280*width), round(((min_y+max_y)/2)/960*height)],[round(((max_x-min_x)/2)/1280*width), round(((max_y-min_y)/2)/960*height)], str(index)))
flag = 0
text = ''
img = draw(img, StoredVar)
img = draw_legend(img)
img = draw_input(img, text)
projector_img = img.copy()
mpHands = mp.solutions.hands
Hands = mpHands.Hands(min_detection_confidence=0.5, min_tracking_confidence=0.5, max_num_hands=1)
mpDraw = mp.solutions.drawing_utils
# 체크: 웹캠이 제대로 열렸는지 확인
if not cap.isOpened():
print("Error: Could not open camera.")
exit()
dw = 1280
dh = 960
# 입력 영상 크기 및 출력 영상 크기
h, w = 960, 1280
# 모서리 점들의 좌표, 드래그 상태 여부
srcQuad = np.array([pers_corners[0][0], [pers_corners[1][0][0], h-pers_corners[1][0][1]], [w-pers_corners[2][0][0], h-pers_corners[2][0][1]], [w-pers_corners[3][0][0], pers_corners[3][0][1]]], np.float32)
dstQuad = np.array([[0, 0], [0, dh-1], [dw-1, dh-1], [dw-1, 0]], np.float32)
# 가상 키보드 이미지 출력창
cv2.imshow(window_name2, projector_img)
while True:
# 웹캠으로부터 프레임을 읽어옴
ret, src = cap.read()
# 프레임 읽기 실패 시 종료
if not ret:
print("Failed to grab frame")
break
results=Hands.process(src)
lmList=[]
if results.multi_hand_landmarks:
for img_in_frame in results.multi_hand_landmarks:
mpDraw.draw_landmarks(src, img_in_frame, mpHands.HAND_CONNECTIONS)
for id,lm in enumerate(results.multi_hand_landmarks[0].landmark):
h,w,c=src.shape
cx,cy=int(lm.x*w),int(lm.y*h)
lmList.append([cx,cy])
projector_img = img.copy()
# 투시 변환
pers = cv2.getPerspectiveTransform(srcQuad, dstQuad)
dst = cv2.warpPerspective(src, pers, (dw, dh), flags=cv2.INTER_CUBIC)
cv2.imshow('dst', dst)
if lmList:
pt1, pt2 = convert_position(np.array([lmList[8][0],lmList[8][1],1]), np.array([lmList[4][0],lmList[4][1],1]), pers)
x1, y1 = pt1
x2, y2 = pt2
l = math.hypot(x2-x1,y2-y1)
# when clicked
if not l > 100:
for button in StoredVar:
x, y = button.pos
w, h = button.size
if x - w< x1 < x + w and y - h < y1 < y + h: # 버튼 영역 내에 손가락이 들어온 것을 탐지
try:
if flag == 0: # 클릭 한번 하면 손가락 뗄 뗴 까지 클릭 비활성화
print(key_map[button.text])
for s in key_map[button.text]:
keyboard.press(s)
pyautogui.press('enter')
# print("Correct result: ", button.text)
# print("Predict result:", np.argmax(model.predict([[x1/(width-1), y1/(height-1)]])))
text = f'{key_map[button.text]} ({button.text})'
cv2.rectangle(src, (x - w - 5, y - h - 5), (x + w + 5, y + h + 5), (0, 255, 0), thickness=2)
cv2.rectangle(projector_img, (x - w - 5, y - h - 5), (x + w + 5, y + h + 5), (0, 255, 0), thickness=2)
print('\a')
flag = 1
except Exception as e:
print(e)
else: # 손가락 때면 클릭 활성화
for button in StoredVar:
temp_x, temp_y = button.pos
temp_w, temp_h = button.size
# if temp_x - temp_w < lmList[8][0] < temp_x + temp_w and temp_y - temp_h < lmList[8][1] < temp_y + temp_h: # 버튼 영역 내에 중지 손가락 끝이 들어온 것을 탐지
if temp_x - temp_w < x1 < temp_x + temp_w and temp_y - temp_h < y1 < temp_y + temp_h: # 버튼 영역 내에 중지 손가락 끝이 들어온 것을 탐지
cv2.rectangle(src, (temp_x - temp_w - 5, temp_y - temp_h - 5), (temp_x + temp_w + 5, temp_y + temp_h + 5), (0, 0, 255), thickness=2)
cv2.rectangle(projector_img, (temp_x - temp_w - 5, temp_y - temp_h - 5), (temp_x + temp_w + 5, temp_y + temp_h + 5), (0, 0, 255), thickness=2)
flag = 0
src = draw(src, StoredVar)
src = draw_legend(src)
src = draw_input(src, text)
projector_img = draw_input(projector_img, text)
cv2.circle(src, tuple(pers_corners[0][0].astype(int)), 25, (255,0,0), -1, cv2.LINE_AA)
cv2.circle(src, tuple(pers_corners[1][0].astype(int)), 25, (0,255,0), -1, cv2.LINE_AA)
cv2.circle(src, tuple(pers_corners[2][0].astype(int)), 25, (0,0,255), -1, cv2.LINE_AA)
cv2.circle(src, tuple(pers_corners[3][0].astype(int)), 25, (255,255,255), -1, cv2.LINE_AA)
cv2.imshow(window_name, src)
cv2.imshow(window_name2, projector_img)
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
cap.release()
cv2.destroyAllWindows()