-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtf_model.py
74 lines (51 loc) · 2.13 KB
/
tf_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import pickle
import numpy as np
import pandas as pd
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense,Dropout
load_df = pd.read_pickle('./updated_stance')
train_X = np.array(load_df['input'])
labels = np.array(load_df['Stance'])
#print(train_X.shape)
X = np.array(load_df['input'].values.tolist(),dtype=np.float32)
#print(X)
one_hot = pd.get_dummies(load_df['Stance'])
#print(one_hot.shape)
pickle.dump(one_hot,open('one_hot_labels.pk','wb'))
train_X = X
# TensorFlow Model
def init_weights(shape):
return tf.Variable(tf.random_normal(shape,stddev=0.01))
def model(X,weights_hidden,weights_output):
hidden = tf.nn.relu(tf.matmul(X,weights_hidden))
return tf.matmul(hidden,weights_output)
X = tf.placeholder(dtype=tf.float32,shape=[None,10001],name='X')
Y = tf.placeholder(dtype=tf.float32,shape=[None,4],name='Y')
weights_hidden = init_weights([10001,100])
weights_output = init_weights([100,4])
model_output = model(X,weights_hidden,weights_output)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=model_output,labels=Y))
train_op = tf.train.AdamOptimizer(learning_rate=0.01).minimize(cost)
predict_op = tf.argmax(model_output,1)
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(10):
print(i)
sess.run(train_op,feed_dict={X:train_X,Y:one_hot})
save_path = saver.save(sess,'./model.ckpt')
print('Model saved in: ', save_path)
matches = tf.equal(tf.argmax(model_output,1),tf.argmax(one_hot,1))
acc = tf.reduce_mean(tf.cast(matches,tf.float32))
print(sess.run(acc,feed_dict={X:train_X,Y:one_hot}))
# Keras model
model = Sequential()
model.add(Dense(units=100,activation='relu',input_shape=(10001,),name='dense_1'))
model.add(Dropout(0.6,name='dropout_1'))
# model.add(Dense(units=100,activation='relu',name='dense_2'))
# model.add(Dropout(0.6,name='dropout_2'))
model.add(Dense(units=4,activation='softmax',name='output'))
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])
model.fit(X,labels,epochs=3)
model.save('keras_model_updated')