|
| 1 | +/** |
| 2 | + * Author: chilli |
| 3 | + * Date: 2019-04-26 |
| 4 | + * License: CC0 |
| 5 | + * Source: https://cp-algorithms.com/graph/dinic.html |
| 6 | + * Description: Flow algorithm with guaranteed complexity $O(V^2E)$. |
| 7 | + * $O(\sqrt{V}E)$ for bipartite graphs, $O(\min(V^{1/2}, E^{2/3})E))$ for unit graphs. |
| 8 | + * To obtain the actual flow, look at positive values only. |
| 9 | + * Status: Tested on SPOJ FASTFLOW and SPOJ MATCHING |
| 10 | + */ |
| 11 | +struct Dinic { |
| 12 | + struct Edge { |
| 13 | + int to, rev; |
| 14 | + ll c, f; |
| 15 | + }; |
| 16 | + vi lvl, ptr, q; |
| 17 | + vector<vector<Edge>> adj; |
| 18 | + Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) {} |
| 19 | + void addEdge(int a, int b, ll c, int rcap = 0) { |
| 20 | + adj[a].push_back({b, sz(adj[b]), c, 0}); |
| 21 | + adj[b].push_back({a, sz(adj[a]) - 1, rcap, 0}); |
| 22 | + } |
| 23 | + ll dfs(int v, int t, ll f) { |
| 24 | + if (v == t || !f) return f; |
| 25 | + for (int& i = ptr[v]; i < sz(adj[v]); i++) { |
| 26 | + Edge& e = adj[v][i]; |
| 27 | + if (lvl[e.to] == lvl[v] + 1) |
| 28 | + if (ll p = dfs(e.to, t, min(f, e.c - e.f))) { |
| 29 | + e.f += p, adj[e.to][e.rev].f -= p; |
| 30 | + return p; |
| 31 | + } |
| 32 | + } |
| 33 | + return 0; |
| 34 | + } |
| 35 | + ll calc(int s, int t) { |
| 36 | + ll flow = 0; q[0] = s; |
| 37 | + do { |
| 38 | + lvl = ptr = vi(sz(q)); |
| 39 | + int qi = 0, qe = lvl[s] = 1; |
| 40 | + while (qi < qe && !lvl[t]) { |
| 41 | + int v = q[qi++]; |
| 42 | + trav(e, adj[v]) |
| 43 | + if (!lvl[e.to] && e.f < e.c) |
| 44 | + q[qe++] = e.to, lvl[e.to] = lvl[v] + 1; |
| 45 | + } |
| 46 | + while (ll p = dfs(s, t, LLONG_MAX)) flow += p; |
| 47 | + } while (lvl[t]); |
| 48 | + return flow; |
| 49 | + } |
| 50 | +}; |
0 commit comments