-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHome.py
640 lines (522 loc) · 23.3 KB
/
Home.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.io as pio #otherwise, streamlit overrides colors! https://discuss.streamlit.io/t/streamlit-overrides-colours-of-plotly-chart/34943
import matplotlib.pyplot as plt
pio.templates.default = "plotly"
#from query import *
import time
import joblib
from rdkit import Chem
from rdkit import Chem
from rdkit.Chem import Draw
#special imports
from streamlit_option_menu import option_menu
from numerize.numerize import numerize
from streamlit_shap import st_shap
import mychem
import shap
import sklearn.neighbors
# Formatting
# Start
st.set_page_config(page_title="Dashboard",page_icon="⚛",layout="wide")
#https://discuss.streamlit.io/t/using-custom-fonts/14005
#t = st.radio("Toggle to see font change", [True, False])
if True:
st.markdown(
"""
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter&display=swap');
html, body, [class*="css"] {
font-family: 'Inter';
}
</style>
""",
unsafe_allow_html=True,
)
#"# Hello"
#"""This font will look different, based on your choice of radio button"""
st.header("Polyurethane Design")
st.markdown("##")
# ====== Todo
# Add save design
# Add acceleration
# Add something else...
# ===== Session Management =====
if "data" not in st.session_state:
st.session_state["design_key"] = 0
st.session_state["data"] = pd.read_csv("data/chemical_only_3output.csv")
tmp = st.session_state["data"]
input_cols = [x for x in tmp.columns if "input" in x]
output_cols = [x for x in tmp.columns if "output" in x]
cols = [x for x in tmp.columns if "output" in x]
cols.extend(input_cols)
cols_and_batch = cols.copy()
cols_and_batch.insert(0,"batch")
df2 = pd.DataFrame(columns=cols)
st.session_state["blank"] = df2.copy()
st.session_state["trial"] = pd.DataFrame(columns=cols_and_batch)
if "model" not in st.session_state:
model_name = "model3output"
with open(f"data/{model_name}.joblib", 'rb') as f:
st.session_state["model"] = joblib.load(f)
# ===== Main Page =====
theme_plotly = 'streamlit' # None or streamlit
# Style
# with open('style.css')as f:
# st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html = True)
#fetch data
#result = view_all_data()
#df=pd.DataFrame(result,columns=["Policy","Expiry","Location","State","Region","Investment","Construction","BusinessType","Earthquake","Flood","Rating","id"])
#load data and model
df = st.session_state["data"]
df_trial = st.session_state["trial"]
input_cols = [x for x in df.columns if "input" in x]
output_cols = [x for x in df.columns if "output" in x]
cols = [x for x in df.columns if "output" in x]
cols.extend(input_cols)
cols_and_batch = cols.copy()
cols_and_batch.insert(0,"batch")
#df2 = pd.concat([df2,df])
predictor = st.session_state["model"]
#sampInput = X_test[1:2].values
#result = predictor.predict(sampInput)[0]
#x,y,z = result
#side bar
st.sidebar.image("data/NobleAI_Logo_Reactor_Blk-Blu.png",caption="NobleAI <> Internal")
def page_Charting():
df["idx"] = df.index
xchoice = st.selectbox("X-axis charting variable",
['input_diol_nO', 'input_diol_nCO2', 'input_diol_nCO3', 'input_diol_nC',
'input_diol_nCH3', 'input_iso_nC6H6', 'input_iso_nC6H12',
'input_iso_nC', 'input_iso_nCH3', 'input_Ui', 'input_NCO/OH PP','output_Tm_ss'])
#px.scatter(df,x="output_Tm_ss",y="output_E")
#fig = px.box(df,x="output_E",points="all",hover_data=["idx","output_Tm_ss","input_Ui","input_NCO/OH PP"])
fig = px.box(df,y="output_E",x=xchoice,points="all",hover_data=["idx","output_Tm_ss","input_Ui","input_NCO/OH PP"])
#add trace
#df2 = df.copy()
#df2["output_E"] = df2["output_E"] + 2
#px.box(df2,y="output_E",x=xchoice,points="all",hover_data=["idx","output_Tm_ss","input_Ui","input_NCO/OH PP"])
fig.update_layout(showlegend=False)
fig.update_layout(
width=400,
height=400,
)
st.plotly_chart(fig, use_container_width=True)
st.markdown("""---""")
#st.data_editor(df)
st.markdown("""---""")
diol_inputs = ['input_diol_nO', 'input_diol_nCO2', 'input_diol_nCO3', 'input_diol_nC','input_diol_nCH3']
diol_values = {k:0 for k in diol_inputs}
diol_values['input_diol_nC'] = 1
iso_inputs = ['input_iso_nC6H6', 'input_iso_nC6H12','input_iso_nC', 'input_iso_nCH3']
iso_values = {k:0 for k in iso_inputs}
iso_values['input_iso_nC'] = 1
other_inputs = ['input_Ui', 'input_NCO/OH PP']
other_values = {'input_Ui':0, 'input_NCO/OH PP':0}
def page_LiveDesign():
st.markdown("""
###### Polyurethanes are "modular" polymers with endless potential and variety.
In this demo, you will have a chance to **optimize the modulus** of polyurethanes by designing the:
- diol
- isocyanate
- the type of chain extender $(U_i)$
- mixing ratio of isocynate to diol (NCO/OH) of the prepolymer
In addition, we provide ML-predicted characterization of IR vibrations (CO_free_W) and the soft segment melting point (Tm_ss).
""")
total1,total2,total3=st.columns(3,gap='large')
if "props" not in st.session_state:
st.session_state["props"] = {
"E":0.,
"CO_free_W":0.,
"Tm_ss":0.
}
if "smiles" not in st.session_state:
st.session_state["smiles"] = [
"CC",
"O=C=NCN=C=O"
]
props = st.session_state["props"]
mcol1,mcol2,mcol3 = st.columns(3)
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("Design Soft Segment (diol)")
for key in diol_inputs:
if key.endswith("nC"):
diol_values[key] = st.slider(key,2,10,step=1)
else:
diol_values[key] = st.slider(key,0,2,step=1)
with col2:
st.subheader("Design Hard Segment (isocyanate)")
for key in iso_inputs:
if key.endswith("nC"):
iso_values[key] = st.slider(key,1,4,step=1)
else:
iso_values[key] = st.slider(key,0,2,step=1)
with col3:
st.subheader("Other Controls")
other_values['input_Ui'] = st.slider('input_Ui',0,1,step=1)
other_values['input_NCO/OH PP'] = st.slider('input_NCO/OH PP',2.25,6.0)
st.session_state["smiles"][0] = mychem.generate_diol(*[v for v in diol_values.values()])
vals = [v for v in iso_values.values()]
vals.append(other_values["input_Ui"])
st.session_state["smiles"][1] = mychem.generate_iso(*vals)
# make prediction
tmp_dict = {}
tmp_dict.update(diol_values)
tmp_dict.update(iso_values)
tmp_dict.update(other_values)
tmp_df = pd.Series(tmp_dict).to_frame().transpose()
props["E"], props["CO_free_W"], props["Tm_ss"] = predictor.predict(tmp_df)[0]
if props["E"] < 1:
props["E"] = 1.0 #[ props["E"] < 1 ] = 1.
st.session_state["props"].update(props)
with total1:
st.info('E')
st.metric(label="",value=f"{props['E']:,.0f}")
with total2:
st.info('CO_free_W')
st.metric(label="",value=f"{props['CO_free_W']:,.0f}")
with total3:
st.info('Tm_ss')
st.metric(label="",value=f"{props['Tm_ss']:,.0f}")
with mcol1:
mol1 = st.session_state["smiles"][0]
mol1 = Chem.MolFromSmiles(mol1)
d1 = Chem.Draw.rdMolDraw2D.MolDraw2DSVG(300,200)
d1.DrawMolecule(mol1)
d1.FinishDrawing()
svg1 = d1.GetDrawingText().replace('svg:','')
st.image(svg1)
with mcol2:
mol2 = st.session_state["smiles"][1]
mol2 = Chem.MolFromSmiles(mol2)
d2 = Chem.Draw.rdMolDraw2D.MolDraw2DSVG(300,200)
d2.DrawMolecule(mol2)
d2.FinishDrawing()
svg2 = d2.GetDrawingText().replace('svg:','')
st.image(svg2)
#graphs
def page_Design():
st.markdown("###### On this page you have a chance to more systematically explore designs, save your results, and view them.")
st.markdown("## Charting")
charting = st.expander("## Charting")
st.markdown("## New Designs")
with st.expander("New Designs",expanded=True):
# page_cols = st.columns( len(output_cols) )
# for ii,pg in enumerate(page_cols):
# with pg:
# st.info(output_cols[ii])
# st.metric(label="",value=f"{23.12:,.1f}")
defaults = {input_field:st.column_config.NumberColumn(input_field,default=0.) for input_field in input_cols
}
c1,c2 = st.columns(2)
with c1:
edited = st.data_editor(st.session_state["blank"][input_cols].copy(),
column_config=defaults,
disabled=output_cols,
num_rows="dynamic",
key=st.session_state["design_key"])
with c2:
if len(edited) > 0:
outputs = predictor.predict(edited[input_cols])
outputs[ outputs[:,0] < 1 ,0] = 1.0
new_data = pd.DataFrame(outputs,columns=output_cols)
st.dataframe( new_data )
if len(edited) > 0:
new_designs = pd.DataFrame( np.hstack([outputs,edited.values.copy()]), columns=cols)
new_designs["batch"] = st.session_state["design_key"]
new_designs = new_designs[cols_and_batch].copy()
#st.dataframe(new_designs)
st.button("Save designs",on_click=lambda: save(edited))
st.markdown("## Saved Designs")
with st.expander("Saved Designs"):
st.write(st.session_state["trial"])
#save
def save(edited):
if len(edited) > 0:
#st.session_state["trial"] = pd.concat([st.session_state["trial"],new_designs])
st.session_state["trial"] = pd.concat( [st.session_state["trial"],new_designs],ignore_index=True )
#edited.drop(edited.index,inplace=True)
st.session_state["design_key"] += 1
with charting:
tmp_c1, tmp_c2 = st.columns(2)
with tmp_c1:
xax = st.selectbox("X-axis",cols)
with tmp_c2:
yax = st.selectbox("Y-axis",cols)
tmp = st.session_state["trial"]
fig = px.scatter(tmp,x=xax,y=yax,color="batch",hover_data=[tmp.index])
fig.update_layout(
width=400,
height=400,
xaxis_title_font_size=20,
xaxis_tickfont_size = 16,
yaxis_title_font_size=20,
yaxis_tickfont_size = 16,
hoverlabel_font_size=16,
legend_font_size=16,
)
fig.update_traces(marker={'size':12,'opacity':0.5})
if len(edited) > 0:
fig.add_trace( px.scatter(new_designs,x=xax,y=yax,
color = [-1]*len(new_designs),
color_discrete_sequence=["#0068c9"]).data[0])
fig.update_layout(coloraxis_showscale=False)
fig.update_traces(marker={'size':12})
st.plotly_chart(fig)
# with st.form("Data form"):
# saved = st.form_submit_button("Save")
# if saved:
# st.session_state["trial"] = edited.copy()
# st.experimental_rerun()
# with st.form("Data form"):
# submitted = st.form_submit_button("Predict")
# #st.write(st.session_state["trial"])
# if submitted:
# if len(edited) > 0:
# inputs = edited.values
# outputs = predictor.predict(edited[input_cols])
# edited[output_cols] = outputs
# #new_df = pd.DataFrame( np.hstack([outputs,inputs]), columns=cols )
# st.write(edited)
# st.session_state["trial"] = edited
# #st.session_state["trial"] = pd.concat([st.session_state["trial"]])
# #st.session_state["trial"] = edited.copy()
# st.experimental_rerun()
# saved = st.form_submit_button("Save")
# if saved:
# st.session_state["trial"] = edited.copy()
# st.experimental_rerun()
# st.dataframe(st.session_state["trial"])
#st.experimental_rerun()
#st.session_state["trial"] = edited.copy()
#st.dataframe(st.session_state["trial"])
#df_trial = df
#df_trial[output_cols] = predictor.predict(df[input_cols])
#st.dataframe(df_trial)
#st.session_state["trial"] = df_trial
def page_Acquire():
st.markdown("###### Here we simulate using the ML model to propose and guide experiments. After acquiring true experimental data, we can then compare to the ML predictions.")
st.markdown("In the simulation below, we begin with collecting 5 true experimental data at random, then using a model to guide selection of top experimental candidates.")
st.markdown("How long does it take for the baseline model to find the same high-performing (E) material? This simulates the effective acceleration from using model-guided design.")
# Data structures:
# Existing data --> can make it just a list of indices
# Competing random acquisition --> can make it just a list of indices
# Proposed data + checkboxes?
# idea: interactive
import random
initial_amount = 5
batch_size = 5
def remove_from_remaining(pick,options):
return [x for x in options if x not in pick]
def reset_data():
st.session_state.curated_remaining = list(df.index)
st.session_state.baseline_remaining = list(df.index)
st.session_state.curated = random.choices(st.session_state.curated_remaining, k=initial_amount)
st.session_state.curated_remaining = remove_from_remaining(st.session_state.curated,st.session_state.curated_remaining)
st.session_state.baseline = st.session_state.curated.copy()
st.session_state.baseline_remaining = remove_from_remaining(st.session_state.baseline,st.session_state.baseline_remaining)
def acquire():
random_add = random.choices(st.session_state.baseline_remaining, k = batch_size)
st.session_state.baseline_reamaining = remove_from_remaining(random_add, st.session_state.baseline_remaining)
st.session_state.baseline.extend(random_add)
#prediction guidance
predictions = predictor.predict( df.iloc[st.session_state.curated_remaining][input_cols] )
arg_inds = np.argsort( -predictions[:,0] ) #sort by E, first column
ML_add = np.array(st.session_state.curated_remaining)[arg_inds[:5].tolist()]
st.session_state.curated_remaining = remove_from_remaining(ML_add, st.session_state.curated_remaining)
st.session_state.curated.extend(ML_add)
if "curated" not in st.session_state:
st.session_state["curated"] = []
st.session_state["curated_remaining"] = []
st.session_state["baseline"] = []
st.session_state["baseline_remaining"] = []
reset_data()
# Button: Reset
bcol1, bcol2 = st.columns(2)
with bcol1:
reset_button = st.button("Reset")
if reset_button:
reset_data()
with bcol2:
acquire_button = st.button("Acquire Exp. Data & Retrain")
if acquire_button:
acquire()
st.markdown("---")
st.markdown("##### Results")
# Show Current Data via plot
vcol1, vcol2 = st.columns(2)
with vcol1:
fig,ax = plt.subplots(figsize=(3,3),dpi=200)
ax.scatter( df.iloc[st.session_state.baseline].output_Tm_ss,
df.iloc[st.session_state.baseline].output_E,
label="baseline", alpha=0.5 )
ax.scatter( df.iloc[st.session_state.curated].output_Tm_ss,
df.iloc[st.session_state.curated].output_E,
label ="ML acquired", alpha=0.5 )
ax.set_xlabel("Tm_ss (brittleness)")
ax.set_ylabel("E (stiffness)")
ax.legend()
st.pyplot(fig)
with vcol2:
fig2,ax2 = plt.subplots(figsize=(3,3),dpi=200)
ax2.plot( df.iloc[st.session_state.baseline].output_E.values,
label ="baseline", alpha=0.5 )
ax2.plot( df.iloc[st.session_state.curated].output_E.values,
label ="ML acquired", alpha=0.5 )
ax2.set_xlabel("iterations")
ax2.set_ylabel("E (stiffness)")
ax2.legend()
st.pyplot(fig2)
# Show Proposals: Expander
# OPTIONAL to make it editable
# Show Old Acquisitions: Expander
# OPTIONAL
# Button: acquire and retrain
# Plot results: r2, acceleration rate?
def page_Analyses():
# Show other benchmarks from my study
# See another explainability tutorial: https://app-california-app.streamlit.app/
# look at instructions, interactively explore, etc.
# A typical SHAP calculation is itself ~20000 model runs (!)
st.markdown("""
### Benchmarks
###### We have done additional analyses to benchmark and prove the efficacy of our models.
""")
c1,c2 = st.columns(2)
with c1:
st.image("data/baseline.png")
st.markdown('In these calculations, we verified that a science-inspired ML architecture mimicking multi-scale structure-property relationships outperforms a naive, direct black box ML model. In addition, our architecture gives us physical characterization "for free" and only uses physically controllable variables as inputs.')
with c2:
st.image("data/r2_vs_training_volume.png")
st.markdown('We find that our ML models perform quite well even with just \~15 data points, with steady improvement as we approach 30+ data points. Note that even an (optimized) Box-Behnken DOE requires \~200 experiments. Our data efficiency means we potentially only need 10~30% of the typical DOE data to characterize the design space.')
st.markdown("""---""")
st.markdown("""
### Full chemical space sweep
""")
design_base = {
"diol_nO":0,
"diol_nCO2":0,
"diol_nCO3":1,
"diol_nC":6,
"diol_nCH3":0
}
import time
start = time.time()
designs = []
for nC6H6 in [0,1,2]:
for nC6H12 in [0,1,2]:
for nC in [2,4,6]:
for nCH3 in [0,1,2]:
for Ui in [0,1]:
for NCO_OH in [2,3,4,5,6]:
for nC_diol in [2,4,6,8]:
for nCH3_diol in [0,1,2]:
for nCO3_diol in [0,1,2]:
for nCO2_diol in [0,1,2]:
for nO_diol in [0,1,2]:
design = design_base.copy()
design.update({"iso_nC6H6": nC6H6,
"iso_nC6H12": nC6H12,
"iso_nC": nC,
"iso_nCH3": nCH3,
"Ui": Ui,
"NCO/OH PP":NCO_OH,
"diol_nC":nC_diol,
"diol_nCH3":nCH3_diol,
"diol_nO":nO_diol,
"diol_nCO2":nCO2_diol,
"diol_nCO3":nCO3_diol,
})
designs.append(design)
new_designs = pd.DataFrame(designs)
new_outputs = predictor.predict(new_designs.values)
# xchoice = st.selectbox("X-axis charting variable",
# ['input_diol_nO', 'input_diol_nCO2', 'input_diol_nCO3', 'input_diol_nC',
# 'input_diol_nCH3', 'input_iso_nC6H6', 'input_iso_nC6H12',
# 'input_iso_nC', 'input_iso_nCH3', 'input_Ui', 'input_NCO/OH PP','output_Tm_ss'])
new_df = pd.DataFrame( np.hstack([new_outputs,new_designs.values]), columns=cols )
#fig = px.box(new_df,y="output_E",x=xchoice,hover_data=[new_df.index,"output_Tm_ss","input_Ui","input_NCO/OH PP"])
tc1, tc2 = st.columns(2)
with tc1:
st.markdown(f"**{time.time()-start:.02}**s to calculate for: {int(len(designs)/5)} chemical combinations, {len(designs)} total evaluations")
fig = px.box(new_df,y="output_E")
fig.update_layout(showlegend=False)
fig.update_layout(
width=400,
height=400,
)
st.plotly_chart(fig, use_container_width=False)
with tc2:
xchoice = st.selectbox("X-axis charting variable",['output_Tm_ss', 'output_CO_free_W'])
fig = px.scatter(new_df,x=xchoice,y="output_E")
fig.update_layout(showlegend=False)
fig.update_layout(
width=400,
height=400,
)
st.plotly_chart(fig, use_container_width=False)
st.write("Top 10 designs:")
new_df.sort_values("output_E",ascending=False,inplace=True)
top10 = new_df.head(100).sample(n=10).copy()
top10.sort_values("output_E",ascending=False,inplace=True)
st.write(top10)
st.markdown("""---""")
st.markdown("""### Overall SHAP interpretability scores""")
start = time.time()
st.markdown(f"(Note this may take a few seconds since it involves ~{ int(np.round(len(input_cols)*2.048,0)*1000)*len(df) } inferences.)")
X, y = df[input_cols], df[output_cols]
def f(x):
return predictor.predict(x)
explainer = shap.KernelExplainer(f,X)
shap_values = explainer(X)[:,:,0]
st.markdown(f"**{time.time()-start:.03}**s to evaluate shap")
st_shap(shap.plots.beeswarm(shap_values))
# st_shap(shap.plots.waterfall(shap_values[0]))
def page_Bonus():
st.markdown("""
## Paid Features
- Advanced acquisition functions
- Advanced optimization
- Advanced analysis
- Dimensionality reduction
- Automated exploration of design space
- Customized data views
- Data annotation
""")
def sideBar():
with st.sidebar:
selected=option_menu(
menu_title="Main Menu",
options=["Live Design","Design","ML-Guided Acceleration","Analyses", "Bonus"], #Charting / info-circle / graph-up
icons=["eye","clipboard2-data","upload","graph-up", "infinity"], #house, icons from: https://icons.getbootstrap.com/
menu_icon="cast",
default_index=0
)
if selected == "Design":
page_Design()
if selected=="Live Design":
#st.subheader(f"Page: {selected}")
page_LiveDesign()
# graphs()
if selected == "Charting":
page_Charting()
if selected=="Analyses":
#st.subheader(f"Page: {selected}")
page_Analyses()
# graphs()
if selected == "Bonus":
page_Bonus()
if selected =="ML-Guided Acceleration":
page_Acquire()
sideBar()
#theme
hide_st_style="""
<style>
#MainMenu {visibility:hidden;}
footer {visibility:hidden;}
header {visibility:hidden;}
</style>
"""