-
Notifications
You must be signed in to change notification settings - Fork 0
/
intent_model_training_logs.txt
880 lines (587 loc) · 25.9 KB
/
intent_model_training_logs.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
dict_keys(['2022-07-12T17:12:05', '2022-07-12T17:02:16', '2022-07-12T17:54:18', '2022-07-12T16:52:14', '2022-07-12T17:38:36', '2022-07-12T16:44:21', '2022-07-12T17:08:12', '2022-07-12T17:42:18', '2022-07-12T17:46:01', '2022-07-12T17:25:48', '2022-07-12T17:15:22', '2022-07-12T17:52:00', '2022-07-12T16:34:07', '2022-07-12T17:32:15'])
Test files ['2022-07-12T17:15:22', '2022-07-12T17:46:01', '2022-07-12T17:25:48']
Train Files: ['2022-07-12T16:34:07', '2022-07-12T17:38:36', '2022-07-12T17:52:00', '2022-07-12T17:42:18', '2022-07-12T17:02:16', '2022-07-12T17:12:05', '2022-07-12T17:32:15', '2022-07-12T17:54:18', '2022-07-12T17:08:12', '2022-07-12T16:44:21', '2022-07-12T16:52:14']
Test Files: ['2022-07-12T17:15:22', '2022-07-12T17:46:01', '2022-07-12T17:25:48']
True
Label counts before balancing: [735, 832, 2631]
ConvLSTMModel(
(convlstm): ConvLSTM(
(cell_list): ModuleList(
(0): ConvLSTMCell(
(conv): Conv2d(258, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
(linear): Linear(in_features=1048576, out_features=3, bias=True)
)
Train: 13%|███████▌ | 70/525 [00:22<02:15, 3.36it/s, acc=29.2857%, loss=773.4218, lr=0.0100, num_correct=164]Train: 15%|████████▋ | 80/525 [00:25<02:11, 3.38it/s, acc=29.4753%, loss=704.6453, lr=0.0100, num_correct=191]
Train: 16%|████████▉ | 82/525 [00:26<02:11, 3.38it/s, acc=29.9699%, loss=690.9510, lr=0.0100, num_correct=199]
Epoch 1/25: Train Acc 32.6346%, Train Loss 282.6060, Learning Rate 0.0100
171it [00:43, 3.90it/s]
Validation: 20.2643%
Taining set stats
[[512 530 307]
[556 567 302]
[561 572 291]]
Classification Report
precision recall f1-score support
0 0.31 0.38 0.34 1349
1 0.34 0.40 0.37 1425
2 0.32 0.20 0.25 1424
accuracy 0.33 4198
macro avg 0.33 0.33 0.32 4198
weighted avg 0.33 0.33 0.32 4198
Validation set stats
[[225 0 2]
[231 0 40]
[813 0 51]]
Classification Report
precision recall f1-score support
0 0.18 0.99 0.30 227
1 0.00 0.00 0.00 271
2 0.55 0.06 0.11 864
accuracy 0.20 1362
macro avg 0.24 0.35 0.14 1362
weighted avg 0.38 0.20 0.12 1362
Epoch 2/25: Train Acc 40.7575%, Train Loss 114.3367, Learning Rate 0.0098
171it [00:43, 3.90it/s]
Validation: 32.5991%
Taining set stats
[[642 458 272]
[440 711 286]
[531 500 358]]
Classification Report
precision recall f1-score support
0 0.40 0.47 0.43 1372
1 0.43 0.49 0.46 1437
2 0.39 0.26 0.31 1389
accuracy 0.41 4198
macro avg 0.40 0.41 0.40 4198
weighted avg 0.41 0.41 0.40 4198
Validation set stats
[[198 14 15]
[160 94 17]
[594 118 152]]
Classification Report
precision recall f1-score support
0 0.21 0.87 0.34 227
1 0.42 0.35 0.38 271
2 0.83 0.18 0.29 864
accuracy 0.33 1362
macro avg 0.48 0.47 0.33 1362
weighted avg 0.64 0.33 0.32 1362
Epoch 3/25: Train Acc 45.0214%, Train Loss 87.0900, Learning Rate 0.0096
171it [00:43, 3.90it/s]
Validation: 57.7093%
Taining set stats
[[788 383 272]
[377 732 268]
[529 479 370]]
Classification Report
precision recall f1-score support
0 0.47 0.55 0.50 1443
1 0.46 0.53 0.49 1377
2 0.41 0.27 0.32 1378
accuracy 0.45 4198
macro avg 0.44 0.45 0.44 4198
weighted avg 0.44 0.45 0.44 4198
Validation set stats
[[ 51 0 176]
[ 25 0 246]
[129 0 735]]
Classification Report
precision recall f1-score support
0 0.25 0.22 0.24 227
1 0.00 0.00 0.00 271
2 0.64 0.85 0.73 864
accuracy 0.58 1362
macro avg 0.29 0.36 0.32 1362
weighted avg 0.44 0.58 0.50 1362
Epoch 4/25: Train Acc 48.0943%, Train Loss 84.7783, Learning Rate 0.0094
171it [00:43, 3.89it/s]
Validation: 21.4391%
Taining set stats
[[827 357 255]
[344 790 262]
[505 456 402]]
Classification Report
precision recall f1-score support
0 0.49 0.57 0.53 1439
1 0.49 0.57 0.53 1396
2 0.44 0.29 0.35 1363
accuracy 0.48 4198
macro avg 0.47 0.48 0.47 4198
weighted avg 0.48 0.48 0.47 4198
Validation set stats
[[ 24 203 0]
[ 3 268 0]
[ 74 790 0]]
Classification Report
precision recall f1-score support
0 0.24 0.11 0.15 227
1 0.21 0.99 0.35 271
2 0.00 0.00 0.00 864
accuracy 0.21 1362
macro avg 0.15 0.36 0.17 1362
weighted avg 0.08 0.21 0.09 1362
Epoch 10/25: Train Acc 58.9566%, Train Loss 42.3394, Learning Rate 0.0065
171it [00:43, 3.89it/s]
Validation: 32.7460%
Taining set stats
[[1011 231 226]
[ 232 930 216]
[ 434 384 534]]
Classification Report
precision recall f1-score support
0 0.60 0.69 0.64 1468
1 0.60 0.67 0.64 1378
2 0.55 0.39 0.46 1352
accuracy 0.59 4198
macro avg 0.58 0.59 0.58 4198
weighted avg 0.58 0.59 0.58 4198
Validation set stats
[[137 82 8]
[112 131 28]
[416 270 178]]
Classification Report
precision recall f1-score support
0 0.21 0.60 0.31 227
1 0.27 0.48 0.35 271
2 0.83 0.21 0.33 864
accuracy 0.33 1362
macro avg 0.44 0.43 0.33 1362
weighted avg 0.62 0.33 0.33 1362
Epoch 11/25: Train Acc 63.1729%, Train Loss 36.3306, Learning Rate 0.0059
171it [00:44, 3.88it/s]
Validation: 36.0499%
Taining set stats
[[ 999 194 225]
[ 170 1030 188]
[ 444 325 623]]
Classification Report
precision recall f1-score support
0 0.62 0.70 0.66 1418
1 0.66 0.74 0.70 1388
2 0.60 0.45 0.51 1392
accuracy 0.63 4198
macro avg 0.63 0.63 0.62 4198
weighted avg 0.63 0.63 0.62 4198
Validation set stats
[[ 94 121 12]
[ 69 173 29]
[280 360 224]]
Classification Report
precision recall f1-score support
0 0.21 0.41 0.28 227
1 0.26 0.64 0.37 271
2 0.85 0.26 0.40 864
accuracy 0.36 1362
macro avg 0.44 0.44 0.35 1362
weighted avg 0.62 0.36 0.37 1362
Epoch 12/25: Train Acc 65.5550%, Train Loss 27.0281, Learning Rate 0.0053
171it [00:44, 3.88it/s]
Validation: 53.5242%
Taining set stats
[[1025 150 217]
[ 168 1064 175]
[ 377 359 663]]
Classification Report
precision recall f1-score support
0 0.65 0.74 0.69 1392
1 0.68 0.76 0.71 1407
2 0.63 0.47 0.54 1399
accuracy 0.66 4198
macro avg 0.65 0.66 0.65 4198
weighted avg 0.65 0.66 0.65 4198
Validation set stats
[[ 73 5 149]
[ 56 31 184]
[205 34 625]]
Classification Report
precision recall f1-score support
0 0.22 0.32 0.26 227
1 0.44 0.11 0.18 271
2 0.65 0.72 0.69 864
accuracy 0.54 1362
macro avg 0.44 0.39 0.38 1362
weighted avg 0.54 0.54 0.51 1362
Epoch 13/25: Train Acc 66.6270%, Train Loss 23.2393, Learning Rate 0.0047
171it [00:44, 3.88it/s]
Validation: 53.4508%
Taining set stats
[[1064 170 194]
[ 165 1030 183]
[ 379 310 703]]
Classification Report
precision recall f1-score support
0 0.66 0.75 0.70 1428
1 0.68 0.75 0.71 1378
2 0.65 0.51 0.57 1392
accuracy 0.67 4198
macro avg 0.66 0.67 0.66 4198
weighted avg 0.66 0.67 0.66 4198
Validation set stats
[[ 16 70 141]
[ 4 137 130]
[ 62 227 575]]
Classification Report
precision recall f1-score support
0 0.20 0.07 0.10 227
1 0.32 0.51 0.39 271
2 0.68 0.67 0.67 864
accuracy 0.53 1362
macro avg 0.40 0.41 0.39 1362
weighted avg 0.53 0.53 0.52 1362
Epoch 14/25: Train Acc 69.5093%, Train Loss 18.2979, Learning Rate 0.0041
171it [00:44, 3.88it/s]
Validation: 50.5140%
Taining set stats
[[1099 132 198]
[ 130 1059 154]
[ 368 298 760]]
Classification Report
precision recall f1-score support
0 0.69 0.77 0.73 1429
1 0.71 0.79 0.75 1343
2 0.68 0.53 0.60 1426
accuracy 0.70 4198
macro avg 0.69 0.70 0.69 4198
weighted avg 0.69 0.70 0.69 4198
Validation set stats
[[ 44 78 105]
[ 24 150 97]
[137 233 494]]
Classification Report
precision recall f1-score support
0 0.21 0.19 0.20 227
1 0.33 0.55 0.41 271
2 0.71 0.57 0.63 864
accuracy 0.51 1362
macro avg 0.42 0.44 0.42 1362
weighted avg 0.55 0.51 0.52 1362
Epoch 15/25: Train Acc 73.7018%, Train Loss 10.7197, Learning Rate 0.0035
171it [00:44, 3.88it/s]
Validation: 32.5257%
Taining set stats
[[1144 87 180]
[ 78 1152 155]
[ 345 259 798]]
Classification Report
precision recall f1-score support
0 0.73 0.81 0.77 1411
1 0.77 0.83 0.80 1385
2 0.70 0.57 0.63 1402
accuracy 0.74 4198
macro avg 0.73 0.74 0.73 4198
weighted avg 0.73 0.74 0.73 4198
Validation set stats
[[ 84 132 11]
[ 63 195 13]
[260 440 164]]
Classification Report
precision recall f1-score support
0 0.21 0.37 0.26 227
1 0.25 0.72 0.38 271
2 0.87 0.19 0.31 864
accuracy 0.33 1362
macro avg 0.44 0.43 0.32 1362
weighted avg 0.64 0.33 0.32 1362
Train: 34%|███████████████████████▎ | 180/525 [00:54<01:44, 3.32it/s, acc=76.8750%, loss=9.2918, lr=0.0033, num_correct=1107]
Train: 34%|███████████████████████▎ | 180/525 [00:54<01:44, 3.32it/s, acc=76.7265%, loss=9.3202, lr=0.0033, num_correct=1111]
Epoch 16/25: Train Acc 74.9643%, Train Loss 9.9514, Learning Rate 0.0029
171it [00:44, 3.88it/s]
Validation: 58.2966%
Taining set stats
[[1168 94 152]
[ 98 1124 145]
[ 286 276 855]]
Classification Report
precision recall f1-score support
0 0.75 0.83 0.79 1414
1 0.75 0.82 0.79 1367
2 0.74 0.60 0.67 1417
accuracy 0.75 4198
macro avg 0.75 0.75 0.75 4198
weighted avg 0.75 0.75 0.75 4198
Validation set stats
[[ 42 50 135]
[ 22 122 127]
[ 96 138 630]]
Classification Report
precision recall f1-score support
0 0.26 0.19 0.22 227
1 0.39 0.45 0.42 271
2 0.71 0.73 0.72 864
accuracy 0.58 1362
macro avg 0.45 0.45 0.45 1362
weighted avg 0.57 0.58 0.57 1362
Epoch 17/25: Train Acc 75.5598%, Train Loss 9.3885, Learning Rate 0.0023
171it [00:44, 3.88it/s]
Validation: 54.2584%
Taining set stats
[[1118 66 187]
[ 76 1193 123]
[ 323 251 861]]
Classification Report
precision recall f1-score support
0 0.74 0.82 0.77 1371
1 0.79 0.86 0.82 1392
2 0.74 0.60 0.66 1435
accuracy 0.76 4198
macro avg 0.75 0.76 0.75 4198
weighted avg 0.75 0.76 0.75 4198
Validation set stats
[[ 76 42 109]
[ 58 110 103]
[188 123 553]]
Classification Report
precision recall f1-score support
0 0.24 0.33 0.28 227
1 0.40 0.41 0.40 271
2 0.72 0.64 0.68 864
accuracy 0.54 1362
macro avg 0.45 0.46 0.45 1362
weighted avg 0.58 0.54 0.56 1362
Epoch 18/25: Train Acc 80.4907%, Train Loss 6.3286, Learning Rate 0.0018
171it [00:44, 3.88it/s]
Validation: 45.3010%
Taining set stats
[[1187 37 161]
[ 44 1322 99]
[ 284 194 870]]
Classification Report
precision recall f1-score support
0 0.78 0.86 0.82 1385
1 0.85 0.90 0.88 1465
2 0.77 0.65 0.70 1348
accuracy 0.80 4198
macro avg 0.80 0.80 0.80 4198
weighted avg 0.80 0.80 0.80 4198
Validation set stats
[[137 38 52]
[108 96 67]
[353 127 384]]
Classification Report
precision recall f1-score support
0 0.23 0.60 0.33 227
1 0.37 0.35 0.36 271
2 0.76 0.44 0.56 864
accuracy 0.45 1362
macro avg 0.45 0.47 0.42 1362
weighted avg 0.60 0.45 0.48 1362
Epoch 19/25: Train Acc 81.2768%, Train Loss 5.4862, Learning Rate 0.0014
171it [00:44, 3.88it/s]
Validation: 51.6887%
Taining set stats
[[1187 50 130]
[ 42 1258 116]
[ 257 191 967]]
Classification Report
precision recall f1-score support
0 0.80 0.87 0.83 1367
1 0.84 0.89 0.86 1416
2 0.80 0.68 0.74 1415
accuracy 0.81 4198
macro avg 0.81 0.81 0.81 4198
weighted avg 0.81 0.81 0.81 4198
Validation set stats
[[ 93 38 96]
[ 70 100 101]
[237 116 511]]
Classification Report
precision recall f1-score support
0 0.23 0.41 0.30 227
1 0.39 0.37 0.38 271
2 0.72 0.59 0.65 864
accuracy 0.52 1362
macro avg 0.45 0.46 0.44 1362
weighted avg 0.57 0.52 0.54 1362
Epoch 20/25: Train Acc 84.1353%, Train Loss 3.8731, Learning Rate 0.0010
171it [00:44, 3.88it/s]
Validation: 57.8561%
Taining set stats
[[1186 23 136]
[ 32 1306 78]
[ 245 152 1040]]
Classification Report
precision recall f1-score support
0 0.81 0.88 0.84 1345
1 0.88 0.92 0.90 1416
2 0.83 0.72 0.77 1437
accuracy 0.84 4198
macro avg 0.84 0.84 0.84 4198
weighted avg 0.84 0.84 0.84 4198
Validation set stats
[[ 58 14 155]
[ 47 45 179]
[129 50 685]]
Classification Report
precision recall f1-score support
0 0.25 0.26 0.25 227
1 0.41 0.17 0.24 271
2 0.67 0.79 0.73 864
accuracy 0.58 1362
macro avg 0.44 0.40 0.41 1362
weighted avg 0.55 0.58 0.55 1362
Epoch 21/25: Train Acc 88.2563%, Train Loss 2.2585, Learning Rate 0.0006
171it [00:44, 3.88it/s]
Validation: 54.0382%
Taining set stats
[[1320 23 79]
[ 18 1266 78]
[ 166 129 1119]]
Classification Report
precision recall f1-score support
0 0.88 0.93 0.90 1422
1 0.89 0.93 0.91 1362
2 0.88 0.79 0.83 1414
accuracy 0.88 4198
macro avg 0.88 0.88 0.88 4198
weighted avg 0.88 0.88 0.88 4198
Validation set stats
[[ 72 55 100]
[ 56 130 85]
[167 163 534]]
Classification Report
precision recall f1-score support
0 0.24 0.32 0.28 227
1 0.37 0.48 0.42 271
2 0.74 0.62 0.67 864
accuracy 0.54 1362
macro avg 0.45 0.47 0.46 1362
weighted avg 0.59 0.54 0.56 1362
Epoch 22/25: Train Acc 91.1386%, Train Loss 1.2253, Learning Rate 0.0004
171it [00:44, 3.87it/s]
Validation: 50.8076%
Taining set stats
[[1293 8 78]
[ 10 1383 44]
[ 141 91 1150]]
Classification Report
precision recall f1-score support
0 0.90 0.94 0.92 1379
1 0.93 0.96 0.95 1437
2 0.90 0.83 0.87 1382
accuracy 0.91 4198
macro avg 0.91 0.91 0.91 4198
weighted avg 0.91 0.91 0.91 4198
Validation set stats
[[ 94 42 91]
[ 76 106 89]
[240 132 492]]
Classification Report
precision recall f1-score support
0 0.23 0.41 0.30 227
1 0.38 0.39 0.38 271
2 0.73 0.57 0.64 864
accuracy 0.51 1362
macro avg 0.45 0.46 0.44 1362
weighted avg 0.58 0.51 0.53 1362
Epoch 22/25: Train Acc 91.1386%, Train Loss 1.2253, Learning Rate 0.0004
171it [00:44, 3.87it/s]
Validation: 50.8076%
Taining set stats
[[1293 8 78]
[ 10 1383 44]
[ 141 91 1150]]
Classification Report
precision recall f1-score support
0 0.90 0.94 0.92 1379
1 0.93 0.96 0.95 1437
2 0.90 0.83 0.87 1382
accuracy 0.91 4198
macro avg 0.91 0.91 0.91 4198
weighted avg 0.91 0.91 0.91 4198
Validation set stats
[[ 94 42 91]
[ 76 106 89]
[240 132 492]]
Classification Report
precision recall f1-score support
0 0.23 0.41 0.30 227
1 0.38 0.39 0.38 271
2 0.73 0.57 0.64 864
accuracy 0.51 1362
macro avg 0.45 0.46 0.44 1362
weighted avg 0.58 0.51 0.53 1362
Epoch 23/25: Train Acc 91.7580%, Train Loss 1.1629, Learning Rate 0.0002
171it [00:44, 3.88it/s]
Validation: 55.9471%
Taining set stats
[[1292 9 56]
[ 2 1347 60]
[ 121 98 1213]]
Classification Report
precision recall f1-score support
0 0.91 0.95 0.93 1357
1 0.93 0.96 0.94 1409
2 0.91 0.85 0.88 1432
accuracy 0.92 4198
macro avg 0.92 0.92 0.92 4198
weighted avg 0.92 0.92 0.92 4198
Validation set stats
[[ 69 35 123]
[ 61 89 121]
[157 103 604]]
Classification Report
precision recall f1-score support
0 0.24 0.30 0.27 227
1 0.39 0.33 0.36 271
2 0.71 0.70 0.71 864
accuracy 0.56 1362
macro avg 0.45 0.44 0.44 1362
weighted avg 0.57 0.56 0.56 1362
Epoch 24/25: Train Acc 92.8299%, Train Loss 0.8166, Learning Rate 0.0000
171it [00:44, 3.88it/s]
Validation: 56.5345%
Taining set stats
[[1359 5 51]
[ 1 1288 48]
[ 109 87 1250]]
Classification Report
precision recall f1-score support
0 0.93 0.96 0.94 1415
1 0.93 0.96 0.95 1337
2 0.93 0.86 0.89 1446
accuracy 0.93 4198
macro avg 0.93 0.93 0.93 4198
weighted avg 0.93 0.93 0.93 4198
Validation set stats
[[ 55 37 135]
[ 41 99 131]
[131 117 616]]
Classification Report
precision recall f1-score support
0 0.24 0.24 0.24 227
1 0.39 0.37 0.38 271
2 0.70 0.71 0.71 864
accuracy 0.57 1362
macro avg 0.44 0.44 0.44 1362
weighted avg 0.56 0.57 0.56 1362
Epoch 25/25: Train Acc 94.1162%, Train Loss 0.6226, Learning Rate 0.0000
171it [00:44, 3.88it/s]
Validation: 56.6079%
Taining set stats
[[1311 1 52]
[ 0 1423 38]
[ 88 68 1217]]
Classification Report
precision recall f1-score support
0 0.94 0.96 0.95 1364
1 0.95 0.97 0.96 1461
2 0.93 0.89 0.91 1373
accuracy 0.94 4198
macro avg 0.94 0.94 0.94 4198
weighted avg 0.94 0.94 0.94 4198
Validation set stats
[[ 55 38 134]
[ 40 104 127]
[132 120 612]]
Classification Report
precision recall f1-score support
0 0.24 0.24 0.24 227
1 0.40 0.38 0.39 271
2 0.70 0.71 0.70 864
accuracy 0.57 1362
macro avg 0.45 0.44 0.45 1362
weighted avg 0.56 0.57 0.57 1362