-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
243 lines (197 loc) · 10.2 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import argparse
import os
import random as randd
import warnings
import torch.nn as nn
import numpy as np
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
from utils import get_net_builder, get_logger, get_port, over_write_args_from_file, AverageMeter, init_params, \
model_statistics
from data.get_dataset import get_discover_datasets
from utils.utils import split_cluster_acc_v2, split_cluster_acc_v2_class
from tqdm import tqdm
import torch.nn.functional as F
import wandb
from scipy.optimize import linear_sum_assignment
import matplotlib.pyplot as plt
import seaborn as sns
def get_config():
parser = argparse.ArgumentParser(description='NCD')
parser.add_argument('--save_dir', type=str, default='./saved_models')
parser.add_argument('-sn', '--save_name', type=str)
parser.add_argument('--resume', action='store_true')
parser.add_argument('--load_path', type=str)
parser.add_argument('-o', '--overwrite', action='store_true', default=True)
parser.add_argument('--epochs', type=int, default=1)
parser.add_argument('--num_labeled_classes', type=int, default=50)
parser.add_argument('--num_unlabeled_classes', type=int, default=50)
parser.add_argument("--regenerate", default=False, action="store_true", help="whether to generate data again")
parser.add_argument('--ratio', type=float, default=1)
parser.add_argument("--imbalance-factor", default=1, type=int, help="imbalance factor")
parser.add_argument('-bsz', '--batch_size', type=int, default=128)
parser.add_argument('--optim', type=str, default='SGD')
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--layer_decay', type=float, default=1.0,
help='layer-wise learning rate decay, default to 1.0 which means no layer decay')
parser.add_argument('--net', type=str, default='wrn_28_2')
parser.add_argument('--net_from_name', action="store_true", default=False)
parser.add_argument('--use_pretrain', default=False, action='store_true')
parser.add_argument('--pretrain_path', default='', type=str)
parser.add_argument('--seed', default=1, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
## standard setting configurations
parser.add_argument('--data_dir', type=str, default='./data')
parser.add_argument('-ds', '--dataset', type=str, default='cifar10')
parser.add_argument('-nc', '--num_classes', type=int, default=100)
parser.add_argument('--num_workers', type=int, default=10)
## cv dataset arguments
parser.add_argument('--img_size', type=int, default=32)
parser.add_argument('--crop_ratio', type=float, default=0.875)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument("--project", default="MIv2", type=str, help="wandb project")
parser.add_argument("--entity", default="rikkixu", type=str, help="wandb entity")
parser.add_argument("--offline", default=True, action="store_true", help="disable wandb")
parser.add_argument('--knn', default=-1, type=int)
parser.add_argument('--m_size', default=2000, type=int)
parser.add_argument('--m_t', type=float, default=0.05)
parser.add_argument('--w_pos', type=float, default=0.2)
parser.add_argument("--num_large_crops", default=2, type=int, help="number of large crops")
parser.add_argument('--increment_coefficient', type=float, default=0.05)
# config file
parser.add_argument('--c', type=str, default='')
# add algorithm specific parameters
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
args.device = torch.device("cuda" if args.cuda else "cpu")
over_write_args_from_file(args, args.c)
args.num_crops = args.num_large_crops
return args
def main(args):
save_path = os.path.join(args.save_dir, args.save_name)
if args.resume:
if args.load_path is None:
raise Exception('Resume of training requires --load_path in the args')
if os.path.abspath(save_path) == os.path.abspath(args.load_path) and not args.overwrite:
raise Exception('Saving & Loading pathes are same. \
If you want over-write, give --overwrite in the argument.')
if args.seed is not None:
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu == 'None':
args.gpu = None
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
main_worker(args.gpu, args)
def main_worker(gpu, args):
'''
main_worker is conducted on each GPU.
'''
args.gpu = gpu
# random seed has to be set for the syncronization of labeled data sampling in each process.
assert args.seed is not None
randd.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
cudnn.deterministic = True
cudnn.benchmark = True
# SET save_path and logger
save_path = os.path.join(args.save_dir, args.save_name)
logger_level = "WARNING"
logger = get_logger(args.save_name, save_path, logger_level)
logger.info(f"Use GPU: {args.gpu} for training")
_net_builder = get_net_builder(args.net, args.net_from_name)
model = _net_builder(num_classes=100, num_unseen_classes=args.num_unlabeled_classes,
num_seen_classes=args.num_labeled_classes, pretrained=args.use_pretrain,
pretrained_path=args.pretrain_path)
model = init_params(model, random_head=args.random_head)
model_statistics(model)
model = model.cuda()
checkpoint = torch.load('path')
model.load_state_dict(checkpoint)
datasets = get_discover_datasets(args.dataset, args)
train_dataset, labeled_train_dataset, unlabeled_train_dataset, all_eval_dataset = datasets["train_dataset"], \
datasets["train_label_dataset"], \
datasets['train_unlabel_dataset'], \
datasets['test_dataset']
class_unlabel_nums = datasets["class_unlabel_nums"]
all_eval_loader = torch.utils.data.DataLoader(
all_eval_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
)
state = {k: v for k, v in args._get_kwargs()}
wandb.init(project=args.project, entity=args.entity, config=state, name=args.save_name, dir="logs")
args.head = 'test'
test_results = test(model, all_eval_loader, args, class_unlabel_nums, 'test')
# train(model, train_loader, unlabeled_eval_loader, all_eval_loader, class_unlabel_nums, args, wandb)
print("Test-All-[{:.2f}]--Novel-[{:.2f}]--Seen-[{:.2f}]--"
"Head-[{:.2f}]--Medium-[{:.2f}]--Tail-[{:.2f}]"
.format(test_results["test/all/avg"] * 100, test_results["test/novel/avg"] * 100,
test_results["test/seen/avg"] * 100, test_results["test/head/avg"] * 100,
test_results["test/medium/avg"] * 100, test_results["test/tail/avg"] * 100))
def test(model, test_loader, args, class_unlabel_nums, prefix):
model.eval()
preds = np.array([])
targets = np.array([])
for batch_idx, (x, label, _) in enumerate(tqdm(test_loader)):
x, label = x.to(device), label.to(device)
outputs = model(x)
if args.head == 'head1':
output = outputs['seen_logits']
elif args.head == 'head2':
output = outputs['unseen_logits']
else:
output = torch.cat([outputs['seen_logits'], outputs['unseen_logits']], dim=-1)
_, pred = output.max(1)
targets = np.append(targets, label.cpu().numpy())
preds = np.append(preds, pred.cpu().numpy())
results = {}
if args.dataset == 'herbarium_19':
_res, _ = split_cluster_acc_v2_class(args, targets.astype(int), preds.astype(int),
class_unlabel_nums=class_unlabel_nums,
num_seen=args.num_labeled_classes)
else:
_res,_ = split_cluster_acc_v2(args, targets.astype(int), preds.astype(int), class_unlabel_nums=class_unlabel_nums,
num_seen=args.num_labeled_classes)
for key, value in _res.items():
if key in results.keys():
results[key].append(value)
else:
results[key] = [value]
log = {}
for key, value in results.items():
log[prefix + "/" + key + "/" + "avg"] = round(sum(value) / len(value), 4)
return log
def compute_best_mapping(y_true, y_pred):
y_true = y_true.astype(np.int64)
y_pred = y_pred.astype(np.int64)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
www = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
www[y_pred[i], y_true[i]] += 1
return np.transpose(np.asarray(linear_sum_assignment(w.max() - w))), w.T, www.T
if __name__ == "__main__":
args = get_config()
args.comment = args.save_name
device = torch.device("cuda" if args.cuda else "cpu")
os.environ["WANDB_API_KEY"] = "f671d0a982a7253de2fa46fad5249cb94fd943c9"
os.environ["WANDB_MODE"] = "offline" if args.offline else "online"
port = get_port()
args.cuda = torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
args.val = False
main(args)