-
Notifications
You must be signed in to change notification settings - Fork 47
/
Ma09i3i038.py
350 lines (301 loc) · 11.1 KB
/
Ma09i3i038.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
from typing import List, Union
import numpy as np
from IPython.display import clear_output
import time
import os
import random
import traceback
BLACK = -1 #黒
WHITE = 1 #白
EMPTY = 0
def init_board(N:int=8):
# ボードを初期化 with an 8x8 numpy array
board = np.zeros((N, N), dtype=int)
# Set up the initial four stones
C0 = N//2
C1 = C0-1
board[C1, C1], board[C0, C0] = WHITE, WHITE # White
board[C1, C0], board[C0, C1] = BLACK, BLACK # Black
return board
def count_board(board, piece=EMPTY):
return np.sum(board == piece)
# Emoji representations for the pieces
BG_EMPTY = "\x1b[42m"
BG_RESET = "\x1b[0m"
# stone_codes = [
# f'黒',
# f'・',
# f'白',
# ]
stone_codes = [
f'{BG_EMPTY}⚫️{BG_RESET}',
f'{BG_EMPTY}🟩{BG_RESET}',
f'{BG_EMPTY}⚪️{BG_RESET}',
]
def stone(piece):
return stone_codes[piece+1]
def display_clear():
os.system('clear')
clear_output(wait=True)
BLACK_NAME=''
WHITE_NAME=''
def display_board(board, clear=True, sleep=0, black=None, white=None):
"""
オセロ盤を表示している.
"""
global BLACK_NAME, WHITE_NAME
if clear:
clear_output(wait=True)
if black:
BLACK_NAME=black
if white:
WHITE_NAME=white
for i, row in enumerate(board):
for piece in row:
print(stone(piece), end='')
if i == 1:
print(f' {BLACK_NAME}')
elif i == 2:
print(f' {stone(BLACK)}: {count_board(board, BLACK):2d}')
elif i == 3:
print(f' {WHITE_NAME}')
elif i == 4:
print(f' {stone(WHITE)}: {count_board(board, WHITE):2d}')
else:
print() # New line after each row
if sleep > 0:
time.sleep(sleep)
def all_positions(board):
N = len(board)
return [(r, c) for r in range(N) for c in range(N)]
# Directions to check (vertical, horizontal)
directions = [(0, 1), (1, 0), (0, -1), (-1, 0), (1, 1), (1, -1), (-1, -1), (-1, 1)]
def is_valid_move(board, row, col, player):
# Check if the position is within the board and empty
N = len(board)
if row < 0 or row >= N or col < 0 or col >= N or board[row, col] != 0:
return False
for dr, dc in directions:
r, c = row + dr, col + dc
if 0 <= r < N and 0 <= c < N and board[r, c] == -player:
while 0 <= r < N and 0 <= c < N and board[r, c] == -player:
r, c = r + dr, c + dc
if 0 <= r < N and 0 <= c < N and board[r, c] == player:
return True
return False
def get_valid_moves(board, player):
return [(r, c) for r, c in all_positions(board) if is_valid_move(board, r, c, player)]
def flip_stones(board, row, col, player):
N = len(board)
stones_to_flip = []
for dr, dc in directions:
directional_stones_to_flip = []
r, c = row + dr, col + dc
while 0 <= r < N and 0 <= c < N and board[r, c] == -player:
directional_stones_to_flip.append((r, c))
r, c = r + dr, c + dc
if 0 <= r < N and 0 <= c < N and board[r, c] == player:
stones_to_flip.extend(directional_stones_to_flip)
return stones_to_flip
def display_move(board, row, col, player):
stones_to_flip = flip_stones(board, row, col, player)
board[row, col] = player
display_board(board, sleep=0.3)
for r, c in stones_to_flip:
board[r, c] = player
display_board(board, sleep=0.1)
display_board(board, sleep=0.6)
def find_eagar_move(board, player):
valid_moves = get_valid_moves(board, player)
max_flips = 0
best_result = None
for r, c in valid_moves:
stones_to_flip = flip_stones(board, r, c, player)
if max_flips < len(stones_to_flip):
best_result = (r, c)
max_flips = len(stones_to_flip)
return best_result
class OthelloAI(object):
def __init__(self, face, name):
self.face = face
self.name = name
def __repr__(self):
return f"{self.face}{self.name}"
def move(self, board: np.array, piece: int)->tuple[int, int]:
valid_moves = get_valid_moves(board, piece)
return valid_moves[0]
def say(self, board: np.array, piece: int)->str:
if count_board(board, piece) >= count_board(board, -piece):
return 'やったー'
else:
return 'がーん'
class OchibiAI(OthelloAI):
# def __init__(self):
# self.face = '🍑'
# self.name = 'もも'
def __init__(self, face, name):
self.face = face
self.name = name
def move(self, board: np.array, piece: int)->tuple[int, int]:
valid_moves = get_valid_moves(board, piece)
return valid_moves[0]
def board_play(player: OthelloAI, board, piece: int):
display_board(board, sleep=0)
if len(get_valid_moves(board, piece)) == 0:
print(f"{player}は、置けるところがありません。スキップします。")
return True
try:
start_time = time.time()
r, c = player.move(board.copy(), piece)
end_time = time.time()
except Exception as e:
print(f"{player.face}{player.name}は、エラーを発生させました。反則まけ")
print(traceback.format_exc())
return False
if not is_valid_move(board, r, c, piece):
print(f"{player}が返した({r},{c})には、置けません。反則負け。")
return False
display_move(board, r, c, piece)
return True
def comment(player1: OthelloAI, player2: OthelloAI, board):
try:
print(f"{player1}: {player1.say(board, BLACK)}")
except:
pass
try:
print(f"{player2}: {player2.say(board, WHITE)}")
except:
pass
def game(player1: OthelloAI, player2: OthelloAI,N=6):
board = init_board(N)
display_board(board, black=f'{player1}', white=f'{player2}')
while count_board(board, EMPTY) > 0:
if not board_play(player1, board, BLACK):
break
if not board_play(player2, board, WHITE):
break
comment(player1, player2, board)
# 危険エリア回避
class NamachaAI(OthelloAI):
# def __init__(self):
# self.face = '☕'
# self.name = 'サブなまちゃまー'
def __init__(self, face, name):
self.face = face
self.name = name
def move(self, board: np.array, piece: int)->tuple[int, int]:
best_moves = self.get_best_moves(board, piece)
return best_moves[0]
def get_yellow_area(self, N):
return [(0, 1), (0, N-2), (1, 0), (1, N-1), (N-2, 0), (N-2, N-1), (N-1, 1), (N-1, N-2)]
def get_red_area(self, N):
return [(1, 1), (1, N-2), (N-2, 1), (N-2, N-2)]
def get_best_moves(self, board, player, N=6):
#置ける場所を取得する
valid_moves = get_valid_moves(board, player)
#角に置かれる可能性があるエリアを除外
#参考(https://www.bodoge-intl.com/strategy/reverse/)
removed_danger_area = [piece for piece in valid_moves if piece not in self.get_red_area(N) and piece not in self.get_yellow_area(N)]
if removed_danger_area:
return removed_danger_area
else:
#レッドエリアのみ除外
removed_red_area = [piece for piece in valid_moves if piece not in self.get_red_area(N)]
if removed_red_area:
return removed_red_area
else:
return valid_moves
# ゲーム木・ミニマックス法
def display_move_no_display(board, row, col, player):
"""
ゲーム木のノード作成のために石を置いた後の盤面をシミュレートする
"""
stones_to_flip = flip_stones(board, row, col, player)
board[row, col] = player
#display_board(board, sleep=0.3)
for r, c in stones_to_flip:
board[r, c] = player
#display_board(board, sleep=0.1)
#display_board(board, sleep=0.6)
class GameTreeNode:
def __init__(self, board, player, move=None):
self.board = board
self.player = player
self.move = move
self.children = []
self.score = None
def create_children(self, depth):
"""
ゲーム木を再起呼び出しで作成する
"""
if depth == 0 or count_board(self.board, EMPTY) == 0:
self.score = evaluate_board(self.board)
return
for move in get_valid_moves(self.board, self.player):
new_board = self.board.copy()
display_move_no_display(new_board, *move, self.player)
child_node = GameTreeNode(new_board, -self.player, move)
self.children.append(child_node)
child_node.create_children(depth - 1)
def evaluate_board(board):
"""
ゲーム木のノードのスコアを算出する評価関数
"""
return count_board(board, BLACK) - count_board(board, WHITE)
def minimax(node, depth, maximizingPlayer, alpha=float('-inf'), beta=float('inf')):
"""
ミニマックスアルゴリズムでスコアを算出する
"""
if depth == 0 or node.children == []:
return evaluate_board(node.board)
if maximizingPlayer:
maxEval = float('-inf')
for child in node.children:
eval = minimax(child, depth-1, False, alpha, beta)
maxEval = max(maxEval, eval)
alpha = max(alpha, eval)
if beta <= alpha:
break
return maxEval
else:
minEval = float('inf')
for child in node.children:
eval = minimax(child, depth-1, True, alpha, beta)
minEval = min(minEval, eval)
beta = min(beta, eval)
if beta <= alpha:
break
return minEval
class NamachaAI2(OthelloAI):
# def __init__(self):
# self.face = '🍵'
# self.name = 'なまちゃまー'
def __init__(self, face, name, depth=6):
super().__init__(face, name)
self.depth = depth
def move(self, board, piece):
# 現在の盤面で有効な手のリストを取得
valid_moves = get_valid_moves(board, piece)
# 有効な手がない場合はNoneを返す
if not valid_moves:
return None
# 各有効な手に対してミニマックスアルゴリズムを適用し、最善の手を決定
best_move = None
best_score = float('-inf') if piece == BLACK else float('inf')
for move in valid_moves:
new_board = board.copy()
# 有効な手を適用して新しい盤面を生成
display_move_no_display(new_board, move[0], move[1], piece)
# 新しい盤面に基づいてゲーム木のノードを生成
node = GameTreeNode(new_board, -piece)
node.create_children(self.depth - 1)
# ミニマックスアルゴリズムでスコアを計算
score = minimax(node, self.depth - 1, piece != BLACK)
# 最適な手を更新
if (piece == BLACK and score > best_score) or (piece != BLACK and score < best_score):
best_move = move
best_score = score
r, c = best_move
if board[r, c] != 0:
print('invalid!')
return best_move