-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathutils.py
336 lines (293 loc) · 12.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import os
import time
from glob import glob
import lmdb
import numpy as np
import visdom
from PIL import Image
from imgaug.augmentables.segmaps import SegmentationMapsOnImage
from skimage.metrics import structural_similarity, peak_signal_noise_ratio
from torch.utils.data import dataset
from tqdm import tqdm
def list_file_tree(path, file_type="tif"):
if file_type.find("*") < 0:
file_type = "*" + file_type
image_list = glob(os.path.join(path, "*" + file_type), recursive=True)
return image_list
class Visualizer(object):
"""
wrapper for visdom
you can still access naive visdom function by
self.line, self.scater,self._send,etc.
due to the implementation of `__getattr__`
"""
def __init__(self, env='default', **kwargs):
self.vis = visdom.Visdom(env=env, **kwargs)
self._vis_kw = kwargs
# e.g.(’loss',23) the 23th value of loss
self.index = {}
self.log_text = ''
def reinit(self, env='default', **kwargs):
"""
change the config of visdom
"""
self.vis = visdom.Visdom(env=env, **kwargs)
return self
def plot_many(self, d):
"""
plot multi values
@params d: dict (name,value) i.e. ('loss',0.11)
"""
for k, v in d.items():
if v is not None:
self.plot(k, v)
def img_many(self, d):
for k, v in d.items():
self.img(k, v)
def plot(self, name, y, **kwargs):
"""
self.plot('loss',1.00)
"""
x = self.index.get(name, 0)
self.vis.line(Y=np.array([y]), X=np.array([x]),
win=name,
opts=dict(title=name),
update=None if x == 0 else 'append',
**kwargs
)
self.index[name] = x + 1
def img(self, name, img_, **kwargs):
"""
self.img('input_img',t.Tensor(64,64))
self.img('input_imgs',t.Tensor(3,64,64))
self.img('input_imgs',t.Tensor(100,1,64,64))
self.img('input_imgs',t.Tensor(100,3,64,64),nrows=10)
!!!don‘t ~~self.img('input_imgs',t.Tensor(100,64,64),nrows=10)~~!!!
"""
self.vis.images(img_,
win=name,
opts=dict(title=name),
**kwargs
)
def log(self, info, win='log_text'):
"""
self.log({'loss':1,'lr':0.0001})
"""
self.log_text += ('[{time}] {info} <br>'.format(
time=time.strftime('%m%d_%H%M%S'),
info=info))
self.vis.text(self.log_text, win)
def __getattr__(self, name):
return getattr(self.vis, name)
def state_dict(self):
return {
'index': self.index,
'vis_kw': self._vis_kw,
'log_text': self.log_text,
'env': self.vis.env
}
def load_state_dict(self, d):
self.vis = visdom.Visdom(
env=d.get('env', self.vis.env), **(self.d.get('vis_kw')))
self.log_text = d.get('log_text', '')
self.index = d.get('index', dict())
return self
def compute_psnr_and_ssim(image1, image2, border_size=0):
"""
Computes PSNR and SSIM index from 2 images.
We round it and clip to 0 - 255. Then shave 'scale' pixels from each border.
"""
if border_size > 0:
image1 = image1[border_size:-border_size, border_size:-border_size, :]
image2 = image2[border_size:-border_size, border_size:-border_size, :]
psnr = peak_signal_noise_ratio(image1, image2, data_range=255)
ssim = structural_similarity(image1, image2, win_size=11, gaussian_weights=True, multichannel=True, K1=0.01,
K2=0.03,
sigma=1.5, data_range=255)
return psnr, ssim
class ImageClassDataset(dataset.Dataset):
def __init__(self, pos_path, neg_path, use_lmdb=False, augment=None, transform=None):
self.pos_path = pos_path
self.neg_path = neg_path
self.augment = augment
self.use_lmdb = use_lmdb
self.transform = transform
self.pos_list = list_file_tree(pos_path, "png")
self.neg_list = list_file_tree(neg_path, "png")
self.image_list = self.pos_list + self.neg_list
if self.use_lmdb:
self.lmdb = self.make_lmdb(os.path.join(self.pos_path, "lmdb"))
def __len__(self):
return len(self.image_list)
def make_lmdb(self, path):
length = len(self.image_list)
if os.path.exists(path):
env = lmdb.open(path, map_size=10737418240)
txn = env.begin()
num = txn.get("len".encode())
if num is None or int(txn.get("len".encode())) != length:
os.remove(path + "/data.mdb")
os.remove(path + "/lock.mdb")
else:
return txn
env = lmdb.open(path, map_size=10737418240)
txn = env.begin(write=True)
for idx in tqdm(range(length)):
image = Image.open(self.image_list[idx]).convert("RGB").resize((256, 256))
label = 1 if idx < len(self.pos_list) else 0
label = str(label)
buff = cv2.imencode(".png", np.array(image, dtype=np.uint8))[1]
txn.put(key=("image" + str(idx)).encode(), value=buff.tobytes())
txn.put(key=("label" + str(idx)).encode(), value=label.encode())
txn.put(key="len".encode(), value=str(length).encode())
txn.commit()
return env.begin()
def __getitem__(self, item):
if self.use_lmdb:
image = self.lmdb.get(key=("image" + str(item)).encode())
label = self.lmdb.get(key=("label" + str(item)).encode())
label = int(label.decode())
image = np.frombuffer(image, dtype=np.uint8)
image = cv2.imdecode(image, cv2.IMREAD_COLOR)
image = Image.fromarray(image)
else:
image = Image.open(self.image_list[item]).convert("RGB").resize((256, 256))
label = 1 if item < len(self.pos_list) else 0
if self.augment:
image = self.augment(image)
image = np.array(image)
if self.transform:
image = self.transform(image=image)
image = (np.array(image, dtype=np.float32) - 128).transpose((2, 0, 1)) / 128.0
return image, label
class ImageDataset(dataset.Dataset):
def __init__(self, data_path, seg_path, transform=None, augment=None):
self.data_path = data_path
self.seg_path = seg_path
self.transform = transform
self.augment = augment
self.image_list = list_file_tree(os.path.join(data_path), "png")
self.image_list += list_file_tree(os.path.join(data_path), "jpg")
self.seg_list = list_file_tree(os.path.join(seg_path), "png")
self.seg_list += list_file_tree(os.path.join(seg_path), "jpg")
assert len(self.image_list) == len(self.seg_list)
self.image_list.sort()
self.seg_list.sort()
def __len__(self):
return len(self.image_list)
def __getitem__(self, item):
image = Image.open(self.image_list[item]).convert("RGB")
image_ori = Image.open(self.seg_list[item]).convert("RGB")
if self.augment:
image = self.augment(image)
image_ori = np.array(image_ori)
image = np.array(image)
image_ori = SegmentationMapsOnImage(image_ori, shape=image_ori.shape)
if self.transform:
image, image_ori = self.transform(image=image, segmentation_maps=image_ori)
image_ori = image_ori.get_arr()
image = (np.array(image, dtype=np.float32) / 255.0).transpose((2, 0, 1))
image_ori = (np.array(image_ori, dtype=np.float32) / 255.0).transpose((2, 0, 1))
image = (image - 0.5) * 2
image_ori = (image_ori - 0.5) * 2
return image, image_ori
class SingleImage(dataset.Dataset):
def __init__(self, data_path, transform=None, augment=None):
self.data_path = data_path
self.transform = transform
self.augment = augment
self.image_list = list_file_tree(os.path.join(data_path), "png")
self.image_list += list_file_tree(os.path.join(data_path), "jpg")
# assert len(self.image_list) == len(self.cyt_list)
self.image_list.sort()
def __len__(self):
return len(self.image_list)
def __getitem__(self, item):
img = Image.open(self.image_list[item])
img = (np.array(img, dtype=np.float32) / 255.0).transpose((2, 0, 1))
return img
class incre_std_avg():
'''
增量计算海量数据平均值和标准差,方差
1.数据
obj.avg为平均值
obj.std为标准差
obj.n为数据个数
对象初始化时需要指定历史平均值,历史标准差和历史数据个数(初始数据集为空则可不填写)
2.方法
obj.incre_in_list()方法传入一个待计算的数据list,进行增量计算,获得新的avg,std和n(海量数据请循环使用该方法)
obj.incre_in_value()方法传入一个待计算的新数据,进行增量计算,获得新的avg,std和n(海量数据请将每个新参数循环带入该方法)
'''
def __init__(self, h_avg=0, h_std=0, n=0):
self.avg = h_avg
self.std = h_std
self.n = n
def incre_in_list(self, new_list):
avg_new = np.mean(new_list, dtype=np.longdouble)
incre_avg = (self.n * self.avg + len(new_list) * avg_new) / \
(self.n + len(new_list))
std_new = np.std(new_list, dtype=np.longdouble)
incre_std = np.sqrt((self.n * (self.std ** 2 + (incre_avg - self.avg) ** 2) + len(new_list)
* (std_new ** 2 + (incre_avg - avg_new) ** 2)) / (self.n + len(new_list)),
dtype=np.longdouble)
self.avg = incre_avg
self.std = incre_std
self.n += len(new_list)
def incre_in_value(self, value):
incre_avg = (self.n * self.avg + value) / (self.n + 1)
incre_std = np.sqrt((self.n * (self.std ** 2 + (incre_avg - self.avg)
** 2) + (incre_avg - value) ** 2) / (self.n + 1), dtype=np.longdouble)
self.avg = incre_avg
self.std = incre_std
self.n += 1
def incre_in_std_mean(self, num, mean, std):
incre_avg = (self.n * self.avg + num * mean) / (self.n + num)
incre_std = np.sqrt((self.n * (self.std ** 2 + (incre_avg - self.avg) ** 2) + num
* (std ** 2 + (incre_avg - mean) ** 2)) / (self.n + num),
dtype=np.longdouble)
self.avg = incre_avg
self.std = incre_std
self.n += num
if __name__ == '__main__':
import shutil
import torch
from datetime import datetime
files = list_file_tree("/media/khtao/My_Book/Dataset/StainNet_Dataset/test/source", "png")
for tt in ["StainNet", "StainGAN", "reinhard_random", "reinhard_matched", "macenko_random", "macenko_matched",
"vahadane_matched", "vahadane_random"]:
target = "/home/khtao/data/colornet/color_net_new/" + tt
save_path = "/media/khtao/My_Book/Dataset/StainNet_Dataset/test/" + tt
os.makedirs(save_path, exist_ok=True)
all_metirc = torch.load(os.path.join(target, "all_metirc.data"))
all_metirc_files = [os.path.split(k[0])[1] for k in all_metirc]
all_metirc_new = []
for file in files:
filename = os.path.split(file)[1]
shutil.copy(os.path.join(target, filename),
os.path.join(save_path, filename))
k = all_metirc_files.index(filename)
all_metirc_new.append(all_metirc[k])
print(filename, all_metirc[k][0])
mean_ssim = sum([k[1]["ssim"] for k in all_metirc_new]) / len(all_metirc_new)
mean_psnr = sum([k[1]["psnr"] for k in all_metirc_new]) / len(all_metirc_new)
mean_ssim_source = sum([k[1]["ssim_source"] for k in all_metirc_new]) / len(all_metirc_new)
print(tt, mean_ssim, mean_psnr, mean_ssim_source)
torch.save(all_metirc, os.path.join(save_path, "all_metirc.data"))
fs = open(os.path.join(save_path, "result.txt"), "a+")
fs.write(
"{}, SSIM GT:{}, PSNR GT:{}, SSIM Source:{}\n".format(datetime.now(), mean_ssim, mean_psnr,
mean_ssim_source))
#
# np.random.shuffle(files)
# total = len(files)
# test_num = int(total * 0.3)
# train_num = total - test_num
# for file in files[:test_num]:
# filename = os.path.split(file)[1]
# shutil.copy(file, os.path.join(save_path, "test", "source", filename))
# shutil.copy(file.replace("dataA", "dataB"), os.path.join(save_path, "test", "target", filename))
#
# for file in files[test_num:]:
# filename = os.path.split(file)[1]
# shutil.copy(file, os.path.join(save_path, "train", "source", filename))
# shutil.copy(file.replace("dataA", "dataB"), os.path.join(save_path, "train", "target", filename))