-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
181 lines (135 loc) · 5.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import time
import os
import argparse
import numpy as np
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as LS
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.utils.data as data
from torchvision import transforms
parser = argparse.ArgumentParser()
parser.add_argument(
'--batch-size', '-N', type=int, default=16, help='batch size')
parser.add_argument(
'--train', '-f', required=True, type=str, help='folder of training images')
parser.add_argument(
'--max-epochs', '-e', type=int, default=1, help='max epochs')
parser.add_argument('--lr', type=float, default=0.0005, help='learning rate')
# parser.add_argument('--cuda', '-g', action='store_true', help='enables cuda')
parser.add_argument(
'--iterations', type=int, default=16, help='unroll iterations')
parser.add_argument('--checkpoint', type=int, help='unroll iterations')
args = parser.parse_args()
## load 32x32 patches from images
import dataset
train_transform = transforms.Compose([
transforms.ToTensor(),
])
train_set = dataset.ImageFolder(root=args.train, transform=train_transform)
train_loader = data.DataLoader(
dataset=train_set, batch_size=args.batch_size, shuffle=True, num_workers=1)
print('total images: {}; total batches: {}'.format(
len(train_set), len(train_loader)))
## load networks on GPU
import network
encoder = network.EncoderCell().cuda()
binarizer = network.Binarizer().cuda()
decoder = network.DecoderCell().cuda()
solver = optim.Adam(
[
{
'params': encoder.parameters()
},
{
'params': binarizer.parameters()
},
{
'params': decoder.parameters()
},
],
lr=args.lr)
def resume(epoch=None):
if epoch is None:
s = 'iter'
epoch = 0
else:
s = 'epoch'
encoder.load_state_dict(
torch.load('checkpoint/encoder_{}_{:08d}.pth'.format(s, epoch)))
binarizer.load_state_dict(
torch.load('checkpoint/binarizer_{}_{:08d}.pth'.format(s, epoch)))
decoder.load_state_dict(
torch.load('checkpoint/decoder_{}_{:08d}.pth'.format(s, epoch)))
def save(index, epoch=True):
if not os.path.exists('checkpoint'):
os.mkdir('checkpoint')
if epoch:
s = 'epoch'
else:
s = 'iter'
torch.save(encoder.state_dict(), 'checkpoint/encoder_{}_{:08d}.pth'.format(
s, index))
torch.save(binarizer.state_dict(),
'checkpoint/binarizer_{}_{:08d}.pth'.format(s, index))
torch.save(decoder.state_dict(), 'checkpoint/decoder_{}_{:08d}.pth'.format(
s, index))
# resume()
scheduler = LS.MultiStepLR(solver, milestones=[3, 10, 20, 50, 100], gamma=0.5)
last_epoch = 0
if args.checkpoint:
resume(args.checkpoint)
last_epoch = args.checkpoint
scheduler.last_epoch = last_epoch - 1
for epoch in range(last_epoch + 1, args.max_epochs + 1):
scheduler.step()
for batch, data in enumerate(train_loader):
batch_t0 = time.time()
## init lstm state
encoder_h_1 = (Variable(torch.zeros(data.size(0), 256, 8, 8).cuda()),
Variable(torch.zeros(data.size(0), 256, 8, 8).cuda()))
# print(encoder_h_1)
encoder_h_2 = (Variable(torch.zeros(data.size(0), 512, 4, 4).cuda()),
Variable(torch.zeros(data.size(0), 512, 4, 4).cuda()))
encoder_h_3 = (Variable(torch.zeros(data.size(0), 512, 2, 2).cuda()),
Variable(torch.zeros(data.size(0), 512, 2, 2).cuda()))
decoder_h_1 = (Variable(torch.zeros(data.size(0), 512, 2, 2).cuda()),
Variable(torch.zeros(data.size(0), 512, 2, 2).cuda()))
decoder_h_2 = (Variable(torch.zeros(data.size(0), 512, 4, 4).cuda()),
Variable(torch.zeros(data.size(0), 512, 4, 4).cuda()))
decoder_h_3 = (Variable(torch.zeros(data.size(0), 256, 8, 8).cuda()),
Variable(torch.zeros(data.size(0), 256, 8, 8).cuda()))
decoder_h_4 = (Variable(torch.zeros(data.size(0), 128, 16, 16).cuda()),
Variable(torch.zeros(data.size(0), 128, 16, 16).cuda()))
patches = Variable(data.cuda())
solver.zero_grad()
losses = []
res = patches - 0.5
bp_t0 = time.time()
for _ in range(args.iterations):
encoded, encoder_h_1, encoder_h_2, encoder_h_3 = encoder(
res, encoder_h_1, encoder_h_2, encoder_h_3)
codes = binarizer(encoded)
output, decoder_h_1, decoder_h_2, decoder_h_3, decoder_h_4 = decoder(
codes, decoder_h_1, decoder_h_2, decoder_h_3, decoder_h_4)
res = res - output
losses.append(res.abs().mean())
bp_t1 = time.time()
loss = sum(losses) / args.iterations
loss.backward()
solver.step()
batch_t1 = time.time()
print(
'[TRAIN] Epoch[{}]({}/{}); Loss: {:.6f}; Backpropagation: {:.4f} sec; Batch: {:.4f} sec'.
format(epoch, batch + 1,
len(train_loader), loss.data, bp_t1 - bp_t0, batch_t1 -
batch_t0))
print(('{:.4f} ' * args.iterations +
'\n').format(*[l.data for l in losses]))
index = (epoch - 1) * len(train_loader) + batch
## save checkpoint every 500 training steps
if index % 500 == 0:
save(0, False)
save(epoch)