-
Notifications
You must be signed in to change notification settings - Fork 126
/
train_tiramisu.py
233 lines (185 loc) · 8.37 KB
/
train_tiramisu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import sys
import math
import string
import random
import shutil
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.autograd import Variable
import torch.nn.functional as F
from utils import AverageMeter
from pathlib import Path
import densenet.tiramisu as tiramisu
from data_loader import ImgDataSetJoint
from torch.utils.data import DataLoader, Dataset, random_split
from joint_transforms import JointRandomSizedCrop
import argparse
import tqdm
RESULTS_PATH = '.results/'
WEIGHTS_PATH = '.weights/'
def save_weights(model, epoch, loss, err):
weights_fname = 'weights-%d-%.3f-%.3f.pth' % (epoch, loss, err)
weights_fpath = os.path.join(WEIGHTS_PATH, weights_fname)
torch.save({
'startEpoch': epoch,
'loss':loss,
'error': err,
'state_dict': model.state_dict()
}, weights_fpath)
shutil.copyfile(weights_fpath, WEIGHTS_PATH+'latest.th')
def load_weights(model, fpath):
print("loading weights '{}'".format(fpath))
weights = torch.load(fpath)
startEpoch = weights['startEpoch']
model.load_state_dict(weights['state_dict'])
print("loaded weights (lastEpoch {}, loss {}, error {})"
.format(startEpoch-1, weights['loss'], weights['error']))
return startEpoch
def get_predictions(output_batch):
bs,c,h,w = output_batch.size()
tensor = output_batch.data
values, indices = tensor.cpu().max(1)
indices = indices.view(bs,h,w)
return indices
def error(preds, targets):
assert preds.size() == targets.size()
bs,h,w = preds.size()
n_pixels = bs*h*w
incorrect = preds.ne(targets).cpu().sum()
err = incorrect/n_pixels
return round(err,5)
def train(train_loader, valid_loader, model, criterion, optimizer, validation, args):
# switch to train mode
best_model_path = os.path.join(*[args.model_dir, 'model_best.pt'])
if Path(best_model_path).exists():
state = torch.load(args.model_path)
epoch = state['epoch']
model.load_state_dict(state['model'])
print('Restored model, epoch {}'.format(epoch))
else:
epoch = 0
valid_losses = []
min_val_los = 9999
for epoch in range(epoch, args.n_epoch + 1):
adjust_learning_rate(optimizer, epoch, args.lr)
losses = AverageMeter()
tq = tqdm.tqdm(total=(len(train_loader) * args.batch_size))
tq.set_description(f'Epoch {epoch}')
model.train()
for i, (input, target) in enumerate(train_loader):
input_var = Variable(input).cuda()
target_var = Variable(target).cuda()
masks_pred = model(input_var)
#assert (masks_probs_flat >= 0. & masks_probs_flat <= 1.).all()
masks_pred = masks_pred.view(-1)
target_var = target_var.view(-1)
loss = criterion(masks_pred, target_var)
losses.update(loss)
tq.set_postfix(loss='{:.5f}'.format(losses.avg))
tq.update(args.batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
valid_metrics = validation(model, valid_loader, criterion)
valid_loss = valid_metrics['valid_loss']
valid_losses.append(valid_loss)
print(f'\tvalid_loss = {valid_loss:.5f}\n')
tq.close()
#save the model of the current epoch
epoc_model_path = os.path.join(*[args.model_dir, f'model_epoch_{epoch}.pt'])
torch.save({
'model': model.state_dict(),
'epoch': epoch,
'valid_loss': valid_loss,
'train_loss': losses.avg
}, epoc_model_path)
#save the best model so far
if valid_loss < min_val_los:
min_val_los = valid_loss
torch.save({
'model': model.state_dict(),
'epoch': epoch,
'valid_loss': valid_loss,
'train_loss': losses.avg
}, best_model_path)
def validate(model, val_loader, criterion):
losses = AverageMeter()
model.eval()
with torch.no_grad():
#tq = tqdm.tqdm(total=(len(val_loader) * args.batch_size))
#tq.set_description(f'Validation ')
for i, (input, target) in enumerate(val_loader):
input_var = Variable(input).cuda()
target_var = Variable(target).cuda()
output = model(input_var)
loss = criterion(output, target_var)
losses.update(loss.item(), input_var.size(0))
#tq.set_postfix(loss='{:.5f}'.format(losses.avg))
#tq.update(args.batch_size)
#tq.close()
return {'valid_loss': losses.avg}
def save_check_point(state, is_best, file_name = 'checkpoint.pth.tar'):
torch.save(state, file_name)
if is_best:
shutil.copy(file_name, 'model_best.pth.tar')
def adjust_learning_rate(optimizer, epoch, lr):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def weights_init(m):
if isinstance(m, nn.Conv2d):
nn.init.kaiming_uniform(m.weight)
m.bias.data.zero_()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('-n_epoch', default=10, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('-lr', default=0.001, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('-momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('-print_freq', default=20, type=int, metavar='N', help='print frequency (default: 10)')
parser.add_argument('-weight_decay', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('-batch_size', default=2, type=int, help='weight decay (default: 1e-4)')
parser.add_argument('-num_workers', default=4, type=int, help='output dataset directory')
parser.add_argument('-data_dir',type=str, help='input dataset directory')
parser.add_argument('-model_dir', type=str, help='output dataset directory')
LR = 1e-4
LR_DECAY = 0.995
DECAY_EVERY_N_EPOCHS = 1
N_EPOCHS = 2
args = parser.parse_args()
os.makedirs(args.model_dir, exist_ok=True)
DIR_IMG = os.path.join(args.data_dir, 'images')
DIR_MASK = os.path.join(args.data_dir, 'masks')
img_names = [path.name for path in Path(DIR_IMG).glob('*.jpg')]
mask_names = [path.name for path in Path(DIR_MASK).glob('*.jpg')]
print(f'total training images = {len(img_names)}')
channel_means = [0.485, 0.456, 0.406]
channel_stds = [0.229, 0.224, 0.225]
train_tfms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(channel_means, channel_stds)])
train_joint_trans = JointRandomSizedCrop(size=224)
train_mask_trans = transforms.ToTensor()
val_tfms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(channel_means, channel_stds)])
val_joint_trans = JointRandomSizedCrop(size=224)
val_mask_trans = transforms.ToTensor()
dataset = ImgDataSetJoint(img_dir=DIR_IMG, img_fnames=img_names, joint_transform=train_joint_trans, mask_dir=DIR_MASK, mask_fnames=mask_names, img_transform=train_tfms, mask_transform=train_mask_trans)
train_size = int(0.85*len(dataset))
valid_size = len(dataset) - train_size
train_dataset, valid_dataset = random_split(dataset, [train_size, valid_size])
train_loader = DataLoader(train_dataset, args.batch_size, shuffle=False, pin_memory=torch.cuda.is_available(), num_workers=args.num_workers)
valid_loader = DataLoader(valid_dataset, args.batch_size, shuffle=False, pin_memory=torch.cuda.is_available(), num_workers=args.num_workers)
model = tiramisu.FCDenseNet67(n_classes=1).cuda()
model.apply(weights_init)
model.cuda()
#optimizer = torch.optim.RMSprop(model.parameters(), lr=args.lr, weight_decay=1e-4)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
#criterion = nn.NLLLoss2d().cuda()
criterion = nn.BCEWithLogitsLoss().to('cuda')
train(train_loader, valid_loader, model, criterion, optimizer, validate, args)