forked from pnnl/L2O-pMINLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_qp.py
150 lines (133 loc) · 6.11 KB
/
run_qp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import time
import numpy as np
import pandas as pd
import torch
from torch import nn
import neuromancer as nm
from tqdm import tqdm
from src.problem import nmQuadratic, msQuadratic
from src.func.layer import netFC
from src.func import roundGumbelModel, roundThresholdModel
# random seed
np.random.seed(42)
torch.manual_seed(42)
torch.cuda.manual_seed(42)
def set_components(method, num_var, num_ineq, hlayers_sol, hlayers_rnd, hwidth):
"""
Set components for NN model with rounding correction
"""
# build neural architecture for the solution map
func = nm.modules.blocks.MLP(insize=num_ineq, outsize=num_var, bias=True,
linear_map=nm.slim.maps["linear"],
nonlin=nn.ReLU, hsizes=[hwidth]*hlayers_sol)
smap = nm.system.Node(func, ["b"], ["x"], name="smap")
# define rounding model
layers_rnd = netFC(input_dim=num_ineq+num_var, hidden_dims=[hwidth]*hlayers_rnd, output_dim=num_var)
if method == "classfication":
rnd = roundThresholdModel(layers=layers_rnd, param_keys=["b"], var_keys=["x"], output_keys=["x_rnd"],
int_ind={"x":range(num_var)}, continuous_update=True, name="round")
else:
rnd = roundGumbelModel(layers=layers_rnd, param_keys=["b"], var_keys=["x"], output_keys=["x_rnd"],
int_ind={"x":range(num_var)}, continuous_update=True, name="round")
# build neuromancer problem for rounding
components = nn.ModuleList([smap, rnd]).to("cuda")
return components
def eval(data_test, model, components):
"""
Evaluate model performence
"""
params, sols, objvals, conviols, elapseds = [], [], [], [], []
for b in tqdm(data_test.datadict["b"][:100]):
# data point as tensor
datapoints = {"b": torch.unsqueeze(b, 0).to("cuda"),
"name": "test"}
# infer
components.eval()
tick = time.time()
with torch.no_grad():
for comp in components:
datapoints.update(comp(datapoints))
tock = time.time()
# assign params
model.set_param_val({"b":b.cpu().numpy()})
# assign vars
x = datapoints["x_rnd"]
for i in range(num_var):
model.vars["x"][i].value = x[0,i].item()
# get solutions
xval, objval = model.get_val()
params.append(list(b.cpu().numpy()))
sols.append(list(list(xval.values())[0].values()))
objvals.append(objval)
conviols.append(sum(model.cal_violation()))
elapseds.append(tock - tick)
df = pd.DataFrame({"Param":params, "Sol":sols, "Obj Val": objvals, "Constraints Viol": conviols, "Elapsed Time": elapseds})
time.sleep(1)
print(df.describe())
print("Number of infeasible solution: {}".format(np.sum(df["Constraints Viol"] > 0)))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
# experiments configuration
parser.add_argument("--round",
type=str,
default="classfication",
choices=["classfication", "threshold"],
help="method for rounding")
parser.add_argument("--size",
type=int,
default=50,
choices = [5, 10, 20, 50, 100, 200, 500],
help="number of decsion variables and constraints")
# get experiment setting
config = parser.parse_args()
# init
num_var = config.size # number of variables
num_ineq = config.size # number of constraints
num_data = 10000 # number of data
test_size = 1000 # number of test size
val_size = 1000 # number of validation size
train_size = num_data - test_size - val_size
# data sample from uniform distribution
b_samples = torch.from_numpy(np.random.uniform(-1, 1, size=(num_data, num_ineq))).float()
data = {"b":b_samples}
# data split
from src.utlis import data_split
data_train, data_test, data_dev = data_split(data, test_size=test_size, val_size=val_size)
# torch dataloaders
from torch.utils.data import DataLoader
batch_size = 64
loader_train = DataLoader(data_train, batch_size, num_workers=0,
collate_fn=data_train.collate_fn, shuffle=True)
loader_test = DataLoader(data_test, batch_size, num_workers=0,
collate_fn=data_test.collate_fn, shuffle=False)
loader_dev = DataLoader(data_dev, batch_size,
num_workers=0, collate_fn=data_dev.collate_fn, shuffle=False)
# random seed
np.random.seed(42)
torch.manual_seed(42)
torch.cuda.manual_seed(42)
# hyperparameters
hsize_dict = {5:16, 10:32, 20:64, 50:128, 100:256, 200:512, 500:1024}
penalty_weight = 100 # weight of constraint violation penealty
hlayers_sol = 5 # number of hidden layers for solution mapping
hlayers_rnd = 4 # number of hidden layers for solution mapping
hwidth = hsize_dict[num_var] # width of hidden layers for solution mapping
lr = 1e-3 # learning rate
# get components
components = set_components(config.round, num_var, num_ineq, hlayers_sol, hlayers_rnd, hwidth)
# loss function with constraint penalty
loss_fn = nmQuadratic(["b", "x_rnd"], num_var, num_ineq, penalty_weight=100)
# training
from src.problem.neuromancer.trainer import trainer
epochs = 200 # number of training epochs
warmup = 20 # number of epochs to wait before enacting early stopping policy
patience = 20 # number of epochs with no improvement in eval metric to allow before early stopping
optimizer = torch.optim.AdamW(components.parameters(), lr=lr)
# create a trainer for the problem
my_trainer = trainer(components, loss_fn, optimizer, epochs, patience, warmup, device="cuda")
# training for the rounding problem
my_trainer.train(loader_train, loader_dev)
# eval
model = msQuadratic(num_var, num_ineq)
eval(data_test, model, components)