-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathARCGraph.py
896 lines (816 loc) · 39.7 KB
/
ARCGraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
import copy
import networkx as nx
import matplotlib.pyplot as plt
from itertools import combinations
from utils import *
class ARCGraph:
colors = ["#000000", "#0074D9", "#FF4136", "#2ECC40", "#FFDC00", "#AAAAAA",
"#F012BE", "#FF851B", "#7FDBFF", "#870C25"]
img_dir = "images"
insertion_transformation_ops = ["insert"]
filter_ops = ["filter_by_color", "filter_by_size", "filter_by_degree", "filter_by_neighbor_size",
"filter_by_neighbor_color"]
param_binding_ops = ["param_bind_neighbor_by_size", "param_bind_neighbor_by_color", "param_bind_node_by_shape",
"param_bind_node_by_size"]
transformation_ops = {
"nbccg": ["update_color", "move_node", "extend_node", "move_node_max", "fill_rectangle", "hollow_rectangle",
"add_border", "insert", "mirror", "flip", "rotate_node", "remove_node"],
"nbvcg": ["update_color", "move_node", "extend_node", "move_node_max", "remove_node"],
"nbhcg": ["update_color", "move_node", "extend_node", "move_node_max", "remove_node"],
"ccgbr": ["update_color", "remove_node"],
"ccgbr2": ["update_color", "remove_node"],
"ccg": ["update_color", "remove_node"],
"mcccg": ["move_node", "move_node_max", "rotate_node", "fill_rectangle", "add_border", "insert", "mirror",
"flip", "remove_node"],
"na": ["flip", "rotate_node"],
"lrg": ["update_color", "move_node", "extend_node", "move_node_max"]}
dynamic_parameters = {"color", "direction", "point", "mirror_point", "mirror_direction", "mirror_axis"}
def __init__(self, graph, name, image, abstraction=None):
self.graph = graph
self.image = image
self.abstraction = abstraction
if abstraction is None:
self.name = name
elif abstraction in name.split("_"):
self.name = name
else:
self.name = name + "_" + abstraction
if self.abstraction in image.multicolor_abstractions:
self.is_multicolor = True
self.most_common_color = 0
self.least_common_color = 0
else:
self.is_multicolor = False
self.most_common_color = image.most_common_color
self.least_common_color = image.least_common_color
self.width = max([node[1] for node in self.image.graph.nodes()]) + 1
self.height = max([node[0] for node in self.image.graph.nodes()]) + 1
self.task_id = name.split("_")[0]
self.save_dir = self.img_dir + "/" + self.task_id
# ------------------------------------- filters ------------------------------------------
# filters take the form of filter(node, params), return true if node satisfies filter
def filter_by_color(self, node, color: int, exclude: bool = False):
"""
return true if node has given color.
if exclude, return true if node does not have given color.
"""
if color == "most":
color = self.most_common_color
elif color == "least":
color = self.least_common_color
if self.is_multicolor:
if not exclude:
return color in self.graph.nodes[node]["color"]
else:
return color not in self.graph.nodes[node]["color"] != color
else:
if not exclude:
return self.graph.nodes[node]["color"] == color
else:
return self.graph.nodes[node]["color"] != color
def filter_by_size(self, node, size, exclude: bool = False):
"""
return true if node has size equal to given size.
if exclude, return true if node does not have size equal to given size.
"""
if size == "max":
size = self.get_attribute_max("size")
elif size == "min":
size = self.get_attribute_min("size")
if size == "odd" and not exclude:
return self.graph.nodes[node]["size"] % 2 != 0
elif size == "odd" and exclude:
return self.graph.nodes[node]["size"] % 2 == 0
elif not exclude:
return self.graph.nodes[node]["size"] == size
elif exclude:
return self.graph.nodes[node]["size"] != size
def filter_by_degree(self, node, degree, exclude: bool = False):
"""
return true if node has degree equal to given degree.
if exclude, return true if node does not have degree equal to given degree.
"""
if not exclude:
return self.graph.degree[node] == degree
else:
return self.graph.degree[node] != degree
def filter_by_neighbor_size(self, node, size, exclude: bool = False):
"""
return true if node has a neighbor of a given size.
if exclude, return true if node does not have a neighbor of a given size.
"""
if size == "max":
size = self.get_attribute_max("size")
elif size == "min":
size = self.get_attribute_min("size")
for neighbor in self.graph.neighbors(node):
if size == "odd" and not exclude:
if self.graph.nodes[neighbor]["size"] % 2 != 0:
return True
elif size == "odd" and exclude:
if self.graph.nodes[neighbor]["size"] % 2 == 0:
return True
elif not exclude:
if self.graph.nodes[neighbor]["size"] == size:
return True
elif exclude:
if self.graph.nodes[neighbor]["size"] != size:
return True
return False
def filter_by_neighbor_color(self, node, color, exclude: bool = False):
"""
return true if node has a neighbor of a given color.
if exclude, return true if node does not have a neighbor of a given color.
"""
if color == "same":
color = self.graph.nodes[node]["color"]
elif color == "most":
color = self.most_common_color
elif color == "least":
color = self.least_common_color
for neighbor in self.graph.neighbors(node):
if not exclude:
if self.graph.nodes[neighbor]["color"] == color:
return True
elif exclude:
if self.graph.nodes[neighbor]["color"] != color:
return True
return False
def filter_by_neighbor_degree(self, node, degree, exclude: bool = False):
"""
return true if node has a neighbor of a given degree.
if exclude, return true if node does not have a neighbor of a given degree.
"""
for neighbor in self.graph.neighbors(node):
if not exclude:
if self.graph.degree[neighbor] == degree:
return True
else:
if self.graph.degree[neighbor] != degree:
return True
return False
# --------------------------------- parameter binding functions ------------------------------------------
# parameter binding takes the form of param_binding(node, params),
# return node2 if rel(node, node2) and filter(node2, params). ex. neighbor of node with color blue
def param_bind_neighbor_by_color(self, node, color, exclude: bool = False):
"""
return the neighbor of node satisfying given color filter
"""
for neighbor in self.graph.neighbors(node):
if self.filter_by_color(neighbor, color, exclude):
return neighbor
return None
def param_bind_neighbor_by_size(self, node, size, exclude: bool = False):
"""
return the neighbor of node satisfying given size filter
"""
for neighbor in self.graph.neighbors(node):
if self.filter_by_size(neighbor, size, exclude):
return neighbor
return None
def param_bind_node_by_size(self, node, size, exclude: bool = False):
"""
return any node in graph satisfying given size filter
"""
for n in self.graph.nodes():
if self.filter_by_size(n, size, exclude):
return n
return None
def param_bind_neighbor_by_degree(self, node, degree, exclude: bool = False):
"""
return the neighbor of node satisfying given degree filter
"""
for neighbor in self.graph.neighbors(node):
if self.filter_by_degree(neighbor, degree, exclude):
return neighbor
return None
def param_bind_node_by_shape(self, node):
"""
return any other node in the graph with the same shape as node
"""
target_shape = self.get_shape(node)
for param_bind_node in self.graph.nodes:
if param_bind_node != node:
candidate_shape = self.get_shape(param_bind_node)
if candidate_shape == target_shape:
return param_bind_node
return None
# ------------------------------------------ transformations ------------------------------------------
def update_color(self, node, color):
"""
update node color to given color
"""
if color == "most":
color = self.most_common_color
elif color == "least":
color = self.least_common_color
self.graph.nodes[node]["color"] = color
return self
def move_node(self, node, direction: Direction):
"""
move node by 1 pixel in a given direction
"""
assert direction is not None
updated_sub_nodes = []
delta_x = 0
delta_y = 0
if direction == Direction.UP or direction == Direction.UP_LEFT or direction == Direction.UP_RIGHT:
delta_y = -1
elif direction == Direction.DOWN or direction == Direction.DOWN_LEFT or direction == Direction.DOWN_RIGHT:
delta_y = 1
if direction == Direction.LEFT or direction == Direction.UP_LEFT or direction == Direction.DOWN_LEFT:
delta_x = -1
elif direction == Direction.RIGHT or direction == Direction.UP_RIGHT or direction == Direction.DOWN_RIGHT:
delta_x = 1
for sub_node in self.graph.nodes[node]["nodes"]:
updated_sub_nodes.append((sub_node[0] + delta_y, sub_node[1] + delta_x))
self.graph.nodes[node]["nodes"] = updated_sub_nodes
return self
def extend_node(self, node, direction: Direction, overlap: bool = False):
"""
extend node in a given direction,
if overlap is true, extend node even if it overlaps with another node
if overlap is false, stop extending before it overlaps with another node
"""
assert direction is not None
updated_sub_nodes = []
delta_x = 0
delta_y = 0
if direction == Direction.UP or direction == Direction.UP_LEFT or direction == Direction.UP_RIGHT:
delta_y = -1
elif direction == Direction.DOWN or direction == Direction.DOWN_LEFT or direction == Direction.DOWN_RIGHT:
delta_y = 1
if direction == Direction.LEFT or direction == Direction.UP_LEFT or direction == Direction.DOWN_LEFT:
delta_x = -1
elif direction == Direction.RIGHT or direction == Direction.UP_RIGHT or direction == Direction.DOWN_RIGHT:
delta_x = 1
for sub_node in self.graph.nodes[node]["nodes"]:
sub_node_y = sub_node[0]
sub_node_x = sub_node[1]
max_allowed = 1000
for foo in range(max_allowed):
updated_sub_nodes.append((sub_node_y, sub_node_x))
sub_node_y += delta_y
sub_node_x += delta_x
if overlap and not self.check_inbound((sub_node_y, sub_node_x)):
# if overlap allowed, stop extending node until hitting edge of image
break
elif not overlap and (self.check_collision(node, [(sub_node_y, sub_node_x)])
or not self.check_inbound((sub_node_y, sub_node_x))):
# if overlap not allowed, stop extending node until hitting edge of image or another node
break
self.graph.nodes[node]["nodes"] = list(set(updated_sub_nodes))
self.graph.nodes[node]["size"] = len(updated_sub_nodes)
return self
def move_node_max(self, node, direction: Direction):
"""
move node in a given direction until it hits another node or the edge of the image
"""
assert direction is not None
delta_x = 0
delta_y = 0
if direction == Direction.UP or direction == Direction.UP_LEFT or direction == Direction.UP_RIGHT:
delta_y = -1
elif direction == Direction.DOWN or direction == Direction.DOWN_LEFT or direction == Direction.DOWN_RIGHT:
delta_y = 1
if direction == Direction.LEFT or direction == Direction.UP_LEFT or direction == Direction.DOWN_LEFT:
delta_x = -1
elif direction == Direction.RIGHT or direction == Direction.UP_RIGHT or direction == Direction.DOWN_RIGHT:
delta_x = 1
max_allowed = 1000
for foo in range(max_allowed):
updated_nodes = []
for sub_node in self.graph.nodes[node]["nodes"]:
updated_nodes.append((sub_node[0] + delta_y, sub_node[1] + delta_x))
if self.check_collision(node, updated_nodes) or not self.check_inbound(updated_nodes):
break
self.graph.nodes[node]["nodes"] = updated_nodes
return self
def rotate_node(self, node, rotation_dir: Rotation):
"""
rotates node around its center point in a given rotational direction
"""
rotate_times = 1
if rotation_dir == Rotation.CW:
mul = -1
elif rotation_dir == Rotation.CCW:
mul = 1
elif rotation_dir == Rotation.CW2:
rotate_times = 2
mul = -1
for t in range(rotate_times):
center_point = (sum([n[0] for n in self.graph.nodes[node]["nodes"]]) // self.graph.nodes[node]["size"],
sum([n[1] for n in self.graph.nodes[node]["nodes"]]) // self.graph.nodes[node]["size"])
new_nodes = []
for sub_node in self.graph.nodes[node]["nodes"]:
new_sub_node = (sub_node[0] - center_point[0], sub_node[1] - center_point[1])
new_sub_node = (- new_sub_node[1] * mul, new_sub_node[0] * mul)
new_sub_node = (new_sub_node[0] + center_point[0], new_sub_node[1] + center_point[1])
new_nodes.append(new_sub_node)
self.graph.nodes[node]["nodes"] = new_nodes
return self
def add_border(self, node, border_color):
"""
add a border with thickness 1 and border_color around the given node
"""
delta = [-1, 0, 1]
border_pixels = []
for sub_node in self.graph.nodes[node]["nodes"]:
for x in delta:
for y in delta:
border_pixel = (sub_node[0] + y, sub_node[1] + x)
if border_pixel not in border_pixels and not self.check_pixel_occupied(border_pixel):
border_pixels.append(border_pixel)
new_node_id = self.generate_node_id(border_color)
if self.is_multicolor:
self.graph.add_node(new_node_id, nodes=list(border_pixels), color=[border_color for j in border_pixels],
size=len(border_pixels))
else:
self.graph.add_node(new_node_id, nodes=list(border_pixels), color=border_color, size=len(border_pixels))
return self
def fill_rectangle(self, node, fill_color, overlap: bool):
"""
fill the rectangle containing the given node with the given color.
if overlap is True, fill the rectangle even if it overlaps with other nodes.
"""
if fill_color == "same":
fill_color = self.graph.nodes[node]["color"]
all_x = [sub_node[1] for sub_node in self.graph.nodes[node]["nodes"]]
all_y = [sub_node[0] for sub_node in self.graph.nodes[node]["nodes"]]
min_x, min_y, max_x, max_y = min(all_x), min(all_y), max(all_x), max(all_y)
unfilled_pixels = []
for x in range(min_x, max_x + 1):
for y in range(min_y, max_y + 1):
pixel = (y, x)
if pixel not in self.graph.nodes[node]["nodes"]:
if overlap:
unfilled_pixels.append(pixel)
elif not self.check_pixel_occupied(pixel):
unfilled_pixels.append(pixel)
if len(unfilled_pixels) > 0:
new_node_id = self.generate_node_id(fill_color)
if self.is_multicolor:
self.graph.add_node(new_node_id, nodes=list(unfilled_pixels),
color=[fill_color for j in unfilled_pixels], size=len(unfilled_pixels))
else:
self.graph.add_node(new_node_id, nodes=list(unfilled_pixels), color=fill_color,
size=len(unfilled_pixels))
return self
def hollow_rectangle(self, node, fill_color):
"""
hollowing the rectangle containing the given node with the given color.
"""
all_y = [n[0] for n in self.graph.nodes[node]["nodes"]]
all_x = [n[1] for n in self.graph.nodes[node]["nodes"]]
border_y = [min(all_y), max(all_y)]
border_x = [min(all_x), max(all_x)]
non_border_pixels = []
new_subnodes = []
for subnode in self.graph.nodes[node]["nodes"]:
if subnode[0] in border_y or subnode[1] in border_x:
new_subnodes.append(subnode)
else:
non_border_pixels.append(subnode)
self.graph.nodes[node]["nodes"] = new_subnodes
if fill_color != self.image.background_color:
new_node_id = self.generate_node_id(fill_color)
self.graph.add_node(new_node_id, nodes=list(non_border_pixels), color=fill_color,
size=len(non_border_pixels))
return self
def mirror(self, node, mirror_axis):
"""
mirroring a node with respect to the given axis.
mirror_axis takes the form of (y, x) where one of y, x equals None to
indicate the other being the axis of mirroring
"""
if mirror_axis[1] is None and mirror_axis[0] is not None:
axis = mirror_axis[0]
new_subnodes = []
for subnode in self.graph.nodes[node]["nodes"]:
new_y = axis - (subnode[0] - axis)
new_x = subnode[1]
new_subnodes.append((new_y, new_x))
if not self.check_collision(node, new_subnodes):
self.graph.nodes[node]["nodes"] = new_subnodes
elif mirror_axis[0] is None and mirror_axis[1] is not None:
axis = mirror_axis[1]
new_subnodes = []
for subnode in self.graph.nodes[node]["nodes"]:
new_y = subnode[0]
new_x = axis - (subnode[1] - axis)
new_subnodes.append((new_y, new_x))
if not self.check_collision(node, new_subnodes):
self.graph.nodes[node]["nodes"] = new_subnodes
return self
def flip(self, node, mirror_direction: Mirror):
"""
flips the given node given direction horizontal, vertical, diagonal left/right
"""
if mirror_direction == Mirror.VERTICAL:
max_y = max([subnode[0] for subnode in self.graph.nodes[node]["nodes"]])
min_y = min([subnode[0] for subnode in self.graph.nodes[node]["nodes"]])
new_subnodes = []
for subnode in self.graph.nodes[node]["nodes"]:
new_y = max_y - (subnode[0] - min_y)
new_x = subnode[1]
new_subnodes.append((new_y, new_x))
if not self.check_collision(node, new_subnodes):
self.graph.nodes[node]["nodes"] = new_subnodes
elif mirror_direction == Mirror.HORIZONTAL:
max_x = max([subnode[1] for subnode in self.graph.nodes[node]["nodes"]])
min_x = min([subnode[1] for subnode in self.graph.nodes[node]["nodes"]])
new_subnodes = []
for subnode in self.graph.nodes[node]["nodes"]:
new_y = subnode[0]
new_x = max_x - (subnode[1] - min_x)
new_subnodes.append((new_y, new_x))
if not self.check_collision(node, new_subnodes):
self.graph.nodes[node]["nodes"] = new_subnodes
elif mirror_direction == Mirror.DIAGONAL_LEFT: # \
min_x = min([subnode[1] for subnode in self.graph.nodes[node]["nodes"]])
min_y = min([subnode[0] for subnode in self.graph.nodes[node]["nodes"]])
new_subnodes = []
for subnode in self.graph.nodes[node]["nodes"]:
new_subnode = (subnode[0] - min_y, subnode[1] - min_x)
new_subnode = (new_subnode[1], new_subnode[0])
new_subnode = (new_subnode[0] + min_y, new_subnode[1] + min_x)
new_subnodes.append(new_subnode)
if not self.check_collision(node, new_subnodes):
self.graph.nodes[node]["nodes"] = new_subnodes
elif mirror_direction == Mirror.DIAGONAL_RIGHT: # /
max_x = max([subnode[1] for subnode in self.graph.nodes[node]["nodes"]])
min_y = min([subnode[0] for subnode in self.graph.nodes[node]["nodes"]])
new_subnodes = []
for subnode in self.graph.nodes[node]["nodes"]:
new_subnode = (subnode[0] - min_y, subnode[1] - max_x)
new_subnode = (- new_subnode[1], - new_subnode[0])
new_subnode = (new_subnode[0] + min_y, new_subnode[1] + max_x)
new_subnodes.append(new_subnode)
if not self.check_collision(node, new_subnodes):
self.graph.nodes[node]["nodes"] = new_subnodes
return self
def insert(self, node, object_id, point, relative_pos: RelativePosition):
"""
insert some pattern identified by object_id at some location,
the location is defined as, the relative position between the given node and point.
for example, point=top, relative_pos=middle will insert the pattern between the given node
and the top of the image.
if object_id is -1, use the pattern given by node
"""
node_centroid = self.get_centroid(node)
if not isinstance(point, tuple):
if point == ImagePoints.TOP:
point = (0, node_centroid[1])
elif point == ImagePoints.BOTTOM:
point = (self.image.height - 1, node_centroid[1])
elif point == ImagePoints.LEFT:
point = (node_centroid[0], 0)
elif point == ImagePoints.RIGHT:
point = (node_centroid[0], self.image.width - 1)
elif point == ImagePoints.TOP_LEFT:
point = (0, 0)
elif point == ImagePoints.TOP_RIGHT:
point = (0, self.image.width - 1)
elif point == ImagePoints.BOTTOM_LEFT:
point = (self.image.height - 1, 0)
elif point == ImagePoints.BOTTOM_RIGHT:
point = (self.image.height - 1, self.image.width - 1)
if object_id == -1:
# special id for dynamic objects, which uses the given nodes as objects
object = self.graph.nodes[node]
else:
object = self.image.task.static_objects_for_insertion[self.abstraction][object_id]
target_point = self.get_point_from_relative_pos(node_centroid, point, relative_pos)
object_centroid = self.get_centroid_from_pixels(object["nodes"])
subnodes_coords = []
for subnode in object["nodes"]:
delta_y = subnode[0] - object_centroid[0]
delta_x = subnode[1] - object_centroid[1]
subnodes_coords.append((target_point[0] + delta_y, target_point[1] + delta_x))
new_node_id = self.generate_node_id(object["color"])
self.graph.add_node(new_node_id, nodes=list(subnodes_coords), color=object["color"],
size=len(list(subnodes_coords)))
return self
def remove_node(self, node):
"""
remove a node from the graph
"""
self.graph.remove_node(node)
# ------------------------------------- utils ------------------------------------------
def get_attribute_max(self, attribute_name):
"""
get the maximum value of the given attribute
"""
if len(list(self.graph.nodes)) == 0:
return None
return max([data[attribute_name] for node, data in self.graph.nodes(data=True)])
def get_attribute_min(self, attribute_name):
"""
get the minimum value of the given attribute
"""
if len(list(self.graph.nodes)) == 0:
return None
return min([data[attribute_name] for node, data in self.graph.nodes(data=True)])
def get_color(self, node):
"""
return the color of the node
"""
if isinstance(node, list):
return [self.graph.nodes[node_i]["color"] for node_i in node]
else:
return self.graph.nodes[node]["color"]
def check_inbound(self, pixels):
"""
check if given pixels are all within the image boundary
"""
if not isinstance(pixels, list):
pixels = [pixels]
for pixel in pixels:
y, x = pixel
if x < 0 or y < 0 or x >= self.width or y >= self.height:
return False
return True
def check_collision(self, node_id, pixels_list=None):
"""
check if given pixels_list collide with other nodes in the graph
node_id is used to retrieve pixels_list if not given.
node_id is also used so that only collision with other nodes are detected.
"""
if pixels_list is None:
pixels_set = set(self.graph.nodes[node_id]["nodes"])
else:
pixels_set = set(pixels_list)
for node, data in self.graph.nodes(data=True):
if len(set(data["nodes"]) & pixels_set) != 0 and node != node_id:
return True
return False
def check_pixel_occupied(self, pixel):
"""
check if a pixel is occupied by any node in the graph
"""
for node, data in self.graph.nodes(data=True):
if pixel in data["nodes"]:
return True
return False
def get_shape(self, node):
"""
given a node, get the shape of the node.
the shape of the node is defined using its pixels shifted so that the top left is 0,0
"""
sub_nodes = self.graph.nodes[node]["nodes"]
if len(sub_nodes) == 0:
return set()
min_x = min([sub_node[1] for sub_node in sub_nodes])
min_y = min([sub_node[0] for sub_node in sub_nodes])
return set([(y - min_y, x - min_x) for y, x in sub_nodes])
def get_centroid(self, node):
"""
get the centroid of a node
"""
center_y = (sum([n[0] for n in self.graph.nodes[node]["nodes"]]) + self.graph.nodes[node]["size"] // 2) // \
self.graph.nodes[node]["size"]
center_x = (sum([n[1] for n in self.graph.nodes[node]["nodes"]]) + self.graph.nodes[node]["size"] // 2) // \
self.graph.nodes[node]["size"]
return (center_y, center_x)
def get_centroid_from_pixels(self, pixels):
"""
get the centroid of a list of pixels
"""
size = len(pixels)
center_y = (sum([n[0] for n in pixels]) + size // 2) // size
center_x = (sum([n[1] for n in pixels]) + size // 2) // size
return (center_y, center_x)
def get_relative_pos(self, node1, node2):
"""
direction of where node 2 is relative to node 1, ie what is the direction going from 1 to 2
"""
for sub_node_1 in self.graph.nodes[node1]["nodes"]:
for sub_node_2 in self.graph.nodes[node2]["nodes"]:
if sub_node_1[0] == sub_node_2[0]:
if sub_node_1[1] < sub_node_2[1]:
return Direction.RIGHT
elif sub_node_1[1] > sub_node_2[1]:
return Direction.LEFT
elif sub_node_1[1] == sub_node_2[1]:
if sub_node_1[0] < sub_node_2[0]:
return Direction.DOWN
elif sub_node_1[0] > sub_node_2[0]:
return Direction.UP
return None
def get_mirror_axis(self, node1, node2):
"""
get the axis to mirror node1 with given node2
"""
node2_centroid = self.get_centroid(node2)
if self.graph.edges[node1, node2]["direction"] == "vertical":
return (node2_centroid[0], None)
else:
return (None, node2_centroid[1])
def get_point_from_relative_pos(self, filtered_point, relative_point, relative_pos: RelativePosition):
"""
get the point to insert new node given
filtered_point: the centroid of the filtered node
relative_point: the centroid of the target node, or static point such as (0,0)
relative_pos: the relative position of the filtered_point to the relative_point
"""
if relative_pos == RelativePosition.SOURCE:
return filtered_point
elif relative_pos == RelativePosition.TARGET:
return relative_point
elif relative_pos == RelativePosition.MIDDLE:
y = (filtered_point[0] + relative_point[0]) // 2
x = (filtered_point[1] + relative_point[1]) // 2
return (y, x)
# ------------------------------------------ apply -----------------------------------
def apply(self, filters, filter_params, transformation, transformation_params):
"""
perform a full operation on the abstracted graph
1. apply filters to get a list of nodes to transform
2. apply param binding to the filtered nodes to retrieve parameters for the transformation
3. apply transformation to the nodes
"""
transformed_nodes = {}
for node in self.graph.nodes():
if self.apply_filters(node, filters, filter_params):
params = self.apply_param_binding(node, transformation_params)
transformed_nodes[node] = params
for node, params in transformed_nodes.items():
self.apply_transformation(node, transformation, params)
# update the edges in the abstracted graph to reflect the changes
self.update_abstracted_graph(list(transformed_nodes.keys()))
def apply_filters(self, node, filters, filter_params):
"""
given filters and a node, return True if node satisfies all filters
"""
satisfy = True
for filter, filter_param in zip(filters, filter_params):
satisfy = satisfy and getattr(self, filter)(node, **filter_param)
return satisfy
def apply_param_binding(self, node, transformation_params):
"""
handle dynamic parameters: if a dictionary is passed as a parameter value, this means the parameter
value needs to be retrieved from the parameter-binded nodes during the search
example: set param "color" to the color of the neighbor with size 1
"""
transformation_params_retrieved = copy.deepcopy(transformation_params[0])
for param_key, param_value in transformation_params[0].items():
if isinstance(param_value, dict):
param_bind_function = param_value["filters"][0]
param_bind_function_params = param_value["filter_params"][0]
target_node = getattr(self, param_bind_function)(node, **param_bind_function_params)
# retrieve value, ex. color of the neighbor with size 1
if param_key == "color":
target_color = self.get_color(target_node)
transformation_params_retrieved[param_key] = target_color
elif param_key == "direction":
target_direction = self.get_relative_pos(node, target_node)
transformation_params_retrieved[param_key] = target_direction
elif param_key == "mirror_point" or param_key == "point":
target_point = self.get_centroid(target_node)
transformation_params_retrieved[param_key] = target_point
elif param_key == "mirror_axis":
target_axis = self.get_mirror_axis(node, target_node)
transformation_params_retrieved[param_key] = target_axis
elif param_key == "mirror_direction":
target_mirror_dir = self.get_mirror_direction(node, target_node)
transformation_params_retrieved[param_key] = target_mirror_dir
else:
raise ValueError("unsupported dynamic parameter")
return transformation_params_retrieved
def apply_transformation(self, node, transformation, transformation_params):
"""
apply transformation to a node
"""
getattr(self, transformation[0])(node, **transformation_params) # currently only allow one transformation
# ------------------------------------------ meta utils -----------------------------------
def copy(self):
"""
return a copy of this ARCGraph object
"""
return ARCGraph(self.graph.copy(), self.name, self.image, self.abstraction)
def generate_node_id(self, color):
"""
find the next available id for a given color,
ex: if color=1 and there are already (1,0) and (1,1), return (1,2)
"""
if isinstance(color, list): # multi-color cases
color = color[0]
max_id = 0
for node in self.graph.nodes():
if node[0] == color:
max_id = max(max_id, node[1])
return (color, max_id + 1)
def undo_abstraction(self):
"""
undo the abstraction to get the corresponding 2D grid
return it as an ARCGraph object
"""
width, height = self.image.image_size
reconstructed_graph = nx.grid_2d_graph(height, width)
nx.set_node_attributes(reconstructed_graph, self.image.background_color, "color")
if self.abstraction in self.image.multicolor_abstractions:
for component, data in self.graph.nodes(data=True):
for i, node in enumerate(data["nodes"]):
try:
reconstructed_graph.nodes[node]["color"] = data["color"][i]
except KeyError: # ignore pixels outside of frame
pass
else:
for component, data in self.graph.nodes(data=True):
for node in data["nodes"]:
try:
reconstructed_graph.nodes[node]["color"] = data["color"]
except KeyError: # ignore pixels outside of frame
pass
return ARCGraph(reconstructed_graph, self.name + "_reconstructed", self.image, None)
def update_abstracted_graph(self, affected_nodes):
"""
update the abstracted graphs so that they remain consistent after transformation
"""
pixel_assignments = {}
for node, data in self.graph.nodes(data=True):
for subnode in data["nodes"]:
if subnode in pixel_assignments:
pixel_assignments[subnode].append(node)
else:
pixel_assignments[subnode] = [node]
for pixel, nodes in pixel_assignments.items():
if len(nodes) > 1:
for node_1, node_2 in combinations(nodes, 2):
if not self.graph.has_edge(node_1, node_2):
self.graph.add_edge(node_1, node_2, direction="overlapping")
for node1, node2 in combinations(self.graph.nodes, 2):
if node1 == node2 or (
self.graph.has_edge(node1, node2) and self.graph.edges[node1, node2]["direction"] == "overlapping"):
continue
else:
nodes_1 = self.graph.nodes[node1]["nodes"]
nodes_2 = self.graph.nodes[node2]["nodes"]
for n1 in nodes_1:
for n2 in nodes_2:
if n1[0] == n2[0]: # two nodes on the same row
for column_index in range(min(n1[1], n2[1]) + 1, max(n1[1], n2[1])):
# try:
pixel_assignment = pixel_assignments.get((n1[0], column_index), [])
if len(pixel_assignment) == 0 or (len(pixel_assignment) == 1 and (
pixel_assignment[0] == node1 or pixel_assignment[0] == node2)):
continue
break
else:
if self.graph.has_edge(node1, node2):
self.graph.edges[node1, node2]["direction"] = "horizontal"
else:
self.graph.add_edge(node1, node2, direction="horizontal")
break
elif n1[1] == n2[1]: # two nodes on the same column:
for row_index in range(min(n1[0], n2[0]) + 1, max(n1[0], n2[0])):
pixel_assignment = pixel_assignments.get((row_index, n1[1]), [])
if len(pixel_assignment) == 0 or (len(pixel_assignment) == 1 and (
pixel_assignment[0] == node1 or pixel_assignment[0] == node2)):
continue
break
else:
if self.graph.has_edge(node1, node2):
self.graph.edges[node1, node2]["direction"] = "vertical"
else:
self.graph.add_edge(node1, node2, direction="vertical")
break
else:
continue
break
def plot(self, ax=None, save_fig=False, file_name=None):
"""
visualize the graph
"""
if ax is None:
if self.abstraction is None:
fig = plt.figure(figsize=(6, 6))
else:
fig = plt.figure(figsize=(4, 4))
else:
fig = ax.get_figure()
if self.abstraction is None:
pos = {(x, y): (y, -x) for x, y in self.graph.nodes()}
color = [self.colors[self.graph.nodes[x, y]["color"]] for x, y in self.graph.nodes()]
nx.draw(self.graph, ax=ax, pos=pos, node_color=color, node_size=600)
nx.draw_networkx_labels(self.graph, ax=ax, font_color="#676767", pos=pos, font_size=8)
else:
pos = {}
for node in self.graph.nodes:
centroid = self.get_centroid(node)
pos[node] = (centroid[1], -centroid[0])
if self.abstraction == "mcccg":
color = [self.colors[0] for node, data in self.graph.nodes(data=True)]
else:
color = [self.colors[data["color"]] for node, data in self.graph.nodes(data=True)]
size = [300 * data["size"] for node, data in self.graph.nodes(data=True)]
nx.draw(self.graph, pos=pos, node_color=color, node_size=size)
nx.draw_networkx_labels(self.graph, font_color="#676767", pos=pos, font_size=8)
edge_labels = nx.get_edge_attributes(self.graph, "direction")
nx.draw_networkx_edge_labels(self.graph, pos=pos, edge_labels=edge_labels)
if save_fig:
if file_name is not None:
fig.savefig(self.save_dir + "/" + file_name)
else:
fig.savefig(self.save_dir + "/" + self.name)
plt.close()