-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlmer_Origin.R
521 lines (438 loc) · 25.7 KB
/
lmer_Origin.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
###Mat FX mixed FX models, focused on Origin (no latitude)###
#Stress Tolerance, REML, using lme4
#mixed effect models
library(lme4)
# #for each normal trait, compare this general set of models
# model1<-lmer(trait ~ Origin +(1|PopID/Mom), family=gaussian,data=modeldata)
# model2<-lmer(trait ~ Origin + (1|PopID), family=gaussian,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
# model3<-lmer(trait ~ Origin + (1|blank), family=gaussian,data=modeldata) # Test population effect
# anova(model2,model1) # mom is sig!
# anova(model3,model2) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
# modelO<-lmer(trait ~ (1|PopID), family=gaussian,data=modeldata)
# anova(modelO,model1) #test for significance of origin - origin only marginally sig....!
#
# #test for one trait, one df, specify non default family
# lfcountLR<- CGtrait.LR.O("LfCount1",al, family=poisson)
#
# #test for one trait, one df
# shootmod <- CGtrait.models.O("ShootMass.gA", al) #test one trait
#
# #for all traits in a df
# #make sure all traits analyzed this way are the same distribution
# names(al)#find col numbers for traits of interestes
# alLR <- lapply(names(al)[8:13],function(n) CGtrait.LR.O(n,al))#apply func to all things in list
# names(alLR) <- names(al)[8:13]
# almodels <- lapply(names(al)[8:13],function(n) CGtrait.models.O(n,al))#apply func to all things in list
# names(almodels) <- names(al)[8:13]
#
# #to get one model
# almodels[[1]][1] #first number is trait in column order of df, second number is model number
# names(almodels[1]) #to verify trait
#
######Allo, Origin only models######
mfallo.dk<-read.table("MFallo.dk.txt", header=T, sep="\t", quote='"', row.names=1) #allo, dk only
head(mfallo.dk)
#mfallo.dk$lxw <- mfallo.dk$LfLgth1 * mfallo.dk$LfWdth1
str(mfallo.dk)
alLR <- lapply(names(mfallo.dk)[c(10:11)],function(n) CGtrait.LR.O(n,mfallo.dk)) #crow, shoot, all gaussian
#names(alLR) <- names(mfallo.dk)[c(11:13, 20)]
alLR #check out LRs of models. Model progression logical?
almodels <- CGtrait.models.O("Mass.gA",mfallo.dk)
alMass.lmer <- almodels$model2
qqnorm(resid(alMass.lmer), main="Q-Q plot for residuals")
qqline(resid(alMass.lmer))
# #####m1, Origin only#####
mfcom1<-read.table("MatFxBonusCtrlM1.txt", header=T, sep="\t", quote='"', row.names=1) #m1 all plants in analysis, balanced, dk only
head(mfcom1)
# mfcom1$lxw <- mfcom1$LfLgth1*mfcom1$LfWdth1
# write.table(mfcom1, file="MatFxBonusCtrlM1.txt", sep="\t", quote=F)
m1lxw <- CGtrait.LR.O("lxw", mfcom1)
m1lxwMod <- CGtrait.models.O("lxw", mfcom1)
m1lxw.lmer <- m1lxwMod$model1
qqnorm(resid(m1lxw.lmer), main="Q-Q plot resid MF m1 lxw")
qqline(resid(m1lxw.lmer))
m1lf <- CGtrait.LR.O("LfCount1", mfcom1, family=poisson)#poisson distribution
###m1, lxw, cross sig, do by hand###
modeldata<-mfcom1[!is.na(mfcom1$lxw),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
modeldata$CrossNum<-as.factor(modeldata$CrossNum)
model1<-lmer(lxw ~ Origin +(1|PopID/CrossNum), family=gaussian,data=modeldata)
model2<-lmer(lxw ~ Origin + (1|PopID), family=gaussian,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3<-lmer(lxw ~ Origin + (1|blank), family=gaussian,data=modeldata) # Test population effect
anova(model2,model1) # mom is sig!
anova(model3,model2) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
modelO<-lmer(lxw ~ (1|PopID/CrossNum), family=gaussian,data=modeldata)
anova(modelO,model1) #test for significance of origin - origin not sig....?
###m1, lfcount, cross sig, do by hand###
modeldata<-mfcom1[!is.na(mfcom1$LfCount1),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
modeldata$CrossNum<-as.factor(modeldata$CrossNum)
model1<-lmer(LfCount1 ~ Origin+ (1|PopID/CrossNum), family=poisson,data=modeldata)
model2<-lmer(LfCount1 ~ Origin+ (1|PopID), family=poisson,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3<-lmer(LfCount1 ~ Origin+ (1|blank), family=poisson,data=modeldata) # Test population effect
anova(model2,model1) # mom is sig!
anova(model3,model2) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
modelO<-lmer(LfCount1 ~ (1|PopID/CrossNum), family=poisson,data=modeldata)
anova(modelO,model1) #test for significance of origin - origin only marginally sig....!
####Control, Origin only####
mfco.dk1<-read.table("MatFxBonusCtrl.txt", header=T, sep="\t", quote='"', row.names=1) #largest balanced control
head(mfco.dk1)
# mfco.dk1$lxwH <- mfco.dk1$LfLgthH * mfco.dk1$LfWdthH
coLR <- lapply(names(mfco.dk1)[c(12:13,21:22,41, 44)],function(n) CGtrait.LR.O(n,mfco.dk1)) #lfwdth, lflgth, crown, shoot, lxw, all gaussian
# names(coLR) <- names(mfco.dk1)[c(15:17,52:53)]
coLR #check out LRs of models. Model progression logical?
# comodels <- lapply(names(mfco.dk1)[c(12:13,21:22,41, 44)],function(n) CGtrait.models.O(n,mfco.dk1))
# m1lxw.lmer <- m1lxwMod$model1
# qqnorm(resid(m1lxw.lmer), main="Q-Q plot for residuals")
# qqline(resid(m1lxw.lmer))
# mfco.dk1$bolt.bin <- as.numeric(mfco.dk1$BoltedatH)-1
# mfco.dk1$BoltDay.adj <- mfco.dk1$BoltDay + 3
# write.table(mfco.dk1, file="MatFxBonusCtrl.txt", sep="\t", quote=F)
coBatH <- CGtrait.LR.O("bolt.bin", mfco.dk1, family=binomial)
coP <- lapply(names(mfco.dk1)[c(11,46)],function(n) CGtrait.LR.O(n,mfco.dk1, family=poisson)) #lfcountH, boltdate, all poisson
coBatHMod <- CGtrait.models.O("bolt.bin",mfco.dk1)
coBatHMod
int<- 0.14461 #inv mean
B<-0.38942 #Originnat estimate from model summary
pN<-exp(int+B)/(exp(int+B)+1) # Native
pI<-exp(int)/(exp(int)+1) # Introduced (B=0)
pI # 14.5%
pN # 60%
#check by looking at percentages
summary(mfco.dk1[mfco.dk1$Origin=="nat",]) #56 rows, 34 boltedatH = 60%
summary(mfco.dk1[mfco.dk1$Origin=="inv",]) #55 rows, 8 boltedatH = 14.5%
####control, lxw, mom sig, so do by hand####
modeldata<-mfco.dk1[!is.na(mfco.dk1$lxwH),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
modeldata$CrossNum<-as.factor(modeldata$CrossNum)
model1raw<-lmer(lxwH ~ Origin +(1|PopID/CrossNum), family=gaussian,data=modeldata)
model2raw<-lmer(lxwH ~ Origin +(1|PopID), family=gaussian,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3raw<-lmer(lxwH ~ Origin +(1|blank), family=gaussian,data=modeldata) # Test population effect
anova(model2raw,model1raw) # mom not sig
anova(model3raw,model2raw) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
modelOraw<-lmer(lxwH ~ (1|PopID/CrossNum), family=gaussian,data=modeldata)
anova(modelOraw,model1raw) #test for significance of origin - origin NOT sig....!
####control, lf count, cross sig so do by hand#####
#poisson on raw data
modeldata<-mfco.dk1[!is.na(mfco.dk1$LfCountH),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
modeldata$CrossNum<-as.factor(modeldata$CrossNum)
model1raw<-lmer(LfCountH ~ Origin +(1|PopID/CrossNum), family=poisson,data=modeldata)
model2raw<-lmer(LfCountH ~Origin +(1|PopID), family=poisson,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3raw<-lmer(LfCountH ~ Origin +(1|blank), family=poisson,data=modeldata) # Test population effect
anova(model2raw,model1raw) # mom not sig
anova(model3raw,model2raw) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
modelOraw<-lmer(LfCountH ~(1|PopID/CrossNum), family=poisson,data=modeldata)
anova(modelOraw,model1raw) #test for significance of origin - origin NOT sig....!
model1raw
int<- 2.9941 #inv mean
B<--0.5973 #Originnat estimate from model summary
pI<-exp(int)
pN<-exp(int+B)
pI
pN
###control, boltday.adj, cross sig, do by hand###
#only bolters
modeldata<-mfco.dk1[!is.na(mfco.dk1$BoltDay.adj),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
modeldata$CrossNum<-as.factor(modeldata$CrossNum)
model1<-lmer(BoltDay.adj ~ Origin +(1|PopID/CrossNum), family=poisson,data=modeldata)
model2<-lmer(BoltDay.adj ~ Origin +(1|PopID), family=poisson,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3<-lmer(BoltDay.adj ~ Origin +(1|blank), family=poisson,data=modeldata) # Test population effect
anova(model2,model1) # mom sig
anova(model3,model2) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
modelO<-lmer(BoltDay.adj ~ (1|PopID/CrossNum), family=poisson,data=modeldata)
anova(modelO,model1) #test for significance of origin - origin not sig!
model1
int<- 4.2839#inv mean
B<--0.2360#Originnat estimate from model summary
pI<-exp(int)
pN<-exp(int+B)
pI
pN
###control, crown, cross sig, do by hand###
modeldata<-mfco.dk1[!is.na(mfco.dk1$CrownDiam.mm),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
modeldata$CrossNum<-as.factor(modeldata$CrossNum)
model1raw<-lmer(CrownDiam.mm ~ Origin +(1|PopID/CrossNum), family=gaussian,data=modeldata)
model2raw<-lmer(CrownDiam.mm ~ Origin +(1|PopID), family=gaussian,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3raw<-lmer(CrownDiam.mm ~ Origin +(1|blank), family=gaussian,data=modeldata) # Test population effect
anova(model2raw,model1raw) # mom not sig
anova(model3raw,model2raw) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
modelOraw<-lmer(CrownDiam.mm ~ (1|PopID/CrossNum), family=gaussian,data=modeldata)
anova(model1raw,modelOraw) #test for significance of origin - origin NOT sig....!
###control, sla, cross sig, do by hand###
modeldata<-mfco.dk1[!is.na(mfco.dk1$sla),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
modeldata$CrossNum<-as.factor(modeldata$CrossNum)
model1raw<-lmer(sla ~ Origin +(1|PopID/CrossNum), family=gaussian,data=modeldata)
model2raw<-lmer(sla ~ Origin +(1|PopID), family=gaussian,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3raw<-lmer(sla ~ Origin +(1|blank), family=gaussian,data=modeldata) # Test population effect
anova(model2raw,model1raw) # mom not sig
anova(model3raw,model2raw) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
modelOraw<-lmer(sla ~ (1|PopID/CrossNum), family=gaussian,data=modeldata)
anova(modelOraw,model1raw) #test for significance of origin - origin NOT sig....!
#####control, mass, extra covariates####
str(mfco.dk1)
modeldata<-mfco.dk1[!is.na(mfco.dk1$ShootMass.g),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
modeldata$CrossNum<-as.factor(modeldata$CrossNum)
model1<-lmer(ShootMass.g ~ Origin * BoltedatH+(BoltedatH|PopID/CrossNum), family=gaussian,data=modeldata)
model2<-lmer(ShootMass.g ~ Origin * BoltedatH+(BoltedatH|PopID), family=gaussian,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3<-lmer(ShootMass.g ~ Origin * BoltedatH+(BoltedatH|blank), family=gaussian,data=modeldata) # Test population effect
anova(model2,model1) # mom is sig!
anova(model3,model2) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
modelInt<-lmer(ShootMass.g ~ Origin + BoltedatH+(BoltedatH|PopID), family=gaussian,data=modeldata)
anova(modelInt,model2) #test for significant interaction btw Origin and Bolted - not sig
modelB0<-lmer(ShootMass.g ~ Origin + (1|PopID), family=gaussian,data=modeldata)
modelB1<-lmer(ShootMass.g ~ Origin + BoltedatH+(1|PopID), family=gaussian,data=modeldata)
modelB2<-lmer(ShootMass.g ~ Origin + (BoltedatH|PopID), family=gaussian,data=modeldata)
anova(modelB0, modelInt)#test for sig of bolting - bolting sig
anova(modelB1, modelInt)#test for sig of bolting - bolting sig
anova(modelB2, modelInt)#test for sig of bolting - bolting sig
modelO<-lmer(ShootMass.g ~ BoltedatH+(1|PopID), family=gaussian,data=modeldata)
anova(modelO,modelB1) #test for significance of origin - origin not sig....?
modelB1
qqnorm(resid(modelB1), main="Q-Q plot resid MF ctrl mass covar")
qqline(resid(modelB1))
##tranform, control, mass, extra covar##
modeldata<-mfco.dk1[!is.na(mfco.dk1$ShootMass.g),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
modeldata$CrossNum<-as.factor(modeldata$CrossNum)
modeldata$mass.log <- log(modeldata$ShootMass.g)
model1<-lmer(mass.log ~ Origin * BoltedatH+(BoltedatH|PopID/CrossNum), family=gaussian,data=modeldata)
model2<-lmer(mass.log ~ Origin * BoltedatH+(BoltedatH|PopID), family=gaussian,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3<-lmer(mass.log ~ Origin * BoltedatH+(BoltedatH|blank), family=gaussian,data=modeldata) # Test population effect
anova(model2,model1) # mom is sig!
anova(model3,model2) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
modelInt<-lmer(mass.log ~ Origin + BoltedatH+(BoltedatH|PopID), family=gaussian,data=modeldata)
anova(modelInt,model2) #test for significant interaction btw Origin and Bolted - not sig
modelB0<-lmer(mass.log ~ Origin + (1|PopID), family=gaussian,data=modeldata)
modelB1<-lmer(mass.log ~ Origin + BoltedatH+(1|PopID), family=gaussian,data=modeldata)
modelB2<-lmer(mass.log ~ Origin + (BoltedatH|PopID), family=gaussian,data=modeldata)
anova(modelB0, modelInt)#test for sig of bolting - bolting sig
anova(modelB1, modelInt)#test for sig of bolting - bolting sig
anova(modelB2, modelInt)#test for sig of bolting - bolting sig
modelO<-lmer(mass.log ~ BoltedatH+(1|PopID), family=gaussian,data=modeldata)
anova(modelO,modelB1) #test for significance of origin - origin not sig....?
modelB1
qqnorm(resid(modelB1), main="Q-Q plot resid MF ctrl mass.log covar")
qqline(resid(modelB1))
#####control, lf count, extra covariates######
str(mfco.dk1)
modeldata<-mfco.dk1[!is.na(mfco.dk1$LfCountH),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
modeldata$Mom<-as.factor(modeldata$Mom)
model1<-lmer(LfCountH ~ Origin * BoltedatH+(BoltedatH|PopID/Mom), family=poisson,data=modeldata)
model2<-lmer(LfCountH ~ Origin * BoltedatH+(BoltedatH|PopID), family=poisson,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3<-lmer(LfCountH ~ Origin * BoltedatH+(BoltedatH|blank), family=poisson,data=modeldata) # Test population effect
anova(model2,model1)
anova(model3,model2) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
modelInt<-lmer(LfCountH ~ Origin + BoltedatH+(BoltedatH|PopID/Mom), family=poisson,data=modeldata)
anova(modelInt,model1) #test for significant interaction btw Origin and Bolted - not sig
modelB0<-lmer(LfCountH ~ Origin + (1|PopID/Mom), family=poisson,data=modeldata)
modelB1<-lmer(LfCountH ~ Origin * BoltedatH+(1|PopID/Mom), family=poisson,data=modeldata)
modelB2<-lmer(LfCountH ~ Origin + (BoltedatH|PopID/Mom), family=poisson,data=modeldata)
anova(modelB0, model1)#test for sig of bolting - bolting not sig
anova(modelB1, model1)#test for sig of bolting - bolting not sig
anova(modelB2, model1)#test for sig of bolting - bolting not sig
#
modelO<-lmer(LfCountH ~ BoltedatH+(BoltedatH|PopID/Mom), family=poisson,data=modeldata)
anova(modelO,model1) #test for significance of origin - origin IS sig....!
anova(modelO, modelInt)
model1
int<-2.94019#inv mean
B<--0.00942#Originnat estimate from model summary
pI<-exp(int)
pN<-exp(int+B)
pI
pN
#####control, boltday, extra covariates####
#given that it's bolted....
str(mfco.dk1)
modeldata<-mfco.dk1[!is.na(mfco.dk1$BoltDay.adj),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
modeldata$Mom<-as.factor(modeldata$Mom)
model1<-lmer(BoltDay.adj ~ Origin *CrownDiam.mm+(CrownDiam.mm|PopID/Mom), family=poisson,data=modeldata)
model2<-lmer(BoltDay.adj ~ Origin *CrownDiam.mm+(CrownDiam.mm|PopID), family=poisson,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3<-lmer(BoltDay.adj ~ Origin *CrownDiam.mm+(CrownDiam.mm|blank), family=poisson,data=modeldata) # Test population effect
anova(model2,model1) # mom sig
anova(model3,model2) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
modelInt<-lmer(BoltDay.adj ~ Origin + CrownDiam.mm+(CrownDiam.mm|PopID/Mom), family=poisson,data=modeldata)
anova(modelInt,model1) #test for significant interaction btw Origin and Bolted - not sig
modelC0<-lmer(BoltDay.adj ~ Origin * CrownDiam.mm+(1|PopID/Mom), family=poisson,data=modeldata)
anova(modelC0, model1)#test for sig of crown - crown not sig
modelC1<-lmer(BoltDay.adj ~ Origin +(CrownDiam.mm|PopID/Mom), family=poisson,data=modeldata)
anova(modelC1,model1)
modelO<-lmer(BoltDay.adj ~ (CrownDiam.mm|PopID/Mom), family=poisson,data=modeldata)
anova(modelO,modelC1) #test for significance of origin - origin not sig!
modelC1
int<-4.33448#inv mean
B<--0.21767#Originnat estimate from model summary
pI<-exp(int)
pN<-exp(int+B)
pI
pN
####Nut def, Origin only####
mfn.dk<-read.table("MatFxNut.dk.txt", header=T, sep="\t", quote='"', row.names=1) #nut, dk only
head(mfn.dk)
xtabs(~Origin+BoltedatH, mfn.dk) # only one bolter... leaving in
# mfn.dk$lxwH <- mfn.dk$LfLgthH * mfn.dk$LfWdthH
# mfn.dk$bolt.bin <- as.numeric(mfn.dk$BoltedatH)-1
# mfn.dk$BoltDay.adj <- mfco.dk1$BoltDay + 3
# write.table(mfn.dk, file="MatFxNut.dk.txt", sep="\t", quote=F)
nLR <- lapply(names(mfn.dk)[c(20:21,27:28, 36)],function(n) CGtrait.LR.O(n, mfn.dk))
#lflgthH, lfwdthH, crown, shoot, lxwH, all gaussian
# names(nLR) <- names(al)[c(11:12, 15:17, 50:51)]
nLR #check out LRs of models. Model progression logical?
nmodels <- CGtrait.models.O("lxwH",mfn.dk)
# nmodels2 <- CGtrait.models("RootH.log",mfn.dk)
nmodels
nlxwh.lmer <- nmodels$model2
qqnorm(resid(nlxwh.lmer), main="Q-Q plot for residuals")
qqline(resid(nlxwh.lmer))
#non-gaussian?
# mfn.dk <- cbind(mfn.dk, bolt.bin=as.numeric(mfn.dk$BoltedatH)-1)
# write.table(n, file="STNutsubset.txt", sep="\t", quote=F)
#
# #nBatH <- CGtrait.LR("bolt.bin", mfn.dk, family=binomial)# no invasive bolted!
nlfcount <- CGtrait.LR.O("LfCountH",mfn.dk, family=poisson) #lfcountH, all poisson
####Cut, Origin only####
mfcu.dk<-read.table("MatFxCut.dk.txt", header=T, sep="\t", quote='"', row.names=1) #cut, dk only
head(mfcu.dk)
cuLR <- CGtrait.LR.O("CrownDiam.mm",mfcu.dk) #crown all gaussian
#non-gaussian?
# mfcu.dk<- cbind(mfcu.dk, bolt.bin=as.numeric(mfcu.dk$BoltedatH)-1)
# write.table(mfcu.dk, file="MatFxCut.dk.txt", sep="\t", quote=F)
xtabs(~Origin+BoltedatH, mfcu.dk)
cuBatH <- CGtrait.LR.O("bolt.bin", mfcu.dk, family=binomial)
cuP <- lapply(names(mfcu.dk)[c(19,34)],function(n) CGtrait.LR.O(n,mfcu.dk, family=poisson)) #lfcountH, boltdate, all poisson
# cumodels <- CGtrait.models.O("RootH.log",cu)
# cumodels
# qqnorm(resid(cumodels$model2), main="Q-Q plot for residuals")
# qqline(resid(cumodels$model2))
# shapiro.test(resid(cumodels$model2))
####cut, lf count, harvest, mom is sig, do by hand###
modeldata<-mfcu.dk[!is.na(mfcu.dk$LfCountH),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
modeldata$CrossNum<-as.factor(modeldata$CrossNum)
model1raw<-lmer(LfCountH ~ Origin + (1|PopID/CrossNum), family=poisson,data=modeldata)
model2raw<-lmer(LfCountH ~ Origin + (1|PopID), family=poisson,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3raw<-lmer(LfCountH ~ Origin + (1|blank), family=poisson,data=modeldata) # Test population effect
anova(model2raw,model1raw) # mom not sig
anova(model3raw,model2raw) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
modelOraw<-lmer(LfCountH ~ (1|PopID/CrossNum), family=poisson,data=modeldata)
anova(modelOraw,model1raw) #test for significance of origin
###cut, harvest, bolt day, PopID not sig, do by hand###
#given that it's bolted....only 6 bolted total.
####Drought, Origin only####
mfd.dk<-read.table("MatFxDrought.dk.txt", header=T, sep="\t", quote='"', row.names=1) #drought, dk only
head(mfd.dk)
#no gaussian
dLR <- lapply(names(mfd.dk)[17:19],function(n) CGtrait.LR.O(n,mfd.dk, family=poisson)) #wilt, totwilt, death, all poisson
names(dLR) <- names(d)[17:19]
#drought, tot wilt
modeldata<-mfd.dk[!is.na(mfd.dk$TotWiltDay),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
modeldata$CrossNum<-as.factor(modeldata$CrossNum)
model1raw<-lmer(TotWiltDay ~ Origin + (1|PopID/CrossNum), family=poisson,data=modeldata)
model2raw<-lmer(TotWiltDay ~ Origin + (1|PopID), family=poisson,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3raw<-lmer(TotWiltDay ~ Origin + (1|blank), family=poisson,data=modeldata) # Test population effect
anova(model1raw,model2raw) # mom not sig
anova(model2raw,model3raw) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
modelOraw<-lmer(TotWiltDay ~ (1|blank), family=poisson,data=modeldata)
anova(model3raw,modelOraw) #test for significance of origin
####Flood, Origin only####
mff.dk<-read.table("MatFxFlood.dk.txt", header=T, sep="\t", quote='"', row.names=1) #flood, dk only
head(mff.dk)
#no gaussian
fLR <- lapply(names(mff.dk)[17:19],function(n) CGtrait.LR.O(n,mff.dk, family=poisson)) #wilt, totwilt, death, all poisson
# names(fLR) <- names(f)[20:21]
#
# fmodels <- lapply(names(f)[20:21],function(n) CGtrait.models(n,f))
# fmodels
#flood, death
modeldata<-mff.dk[!is.na(mff.dk$DeathDay),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
modeldata$CrossNum<-as.factor(modeldata$CrossNum)
model1raw<-lmer(DeathDay ~ Origin + (1|PopID/CrossNum), family=poisson,data=modeldata)
model2raw<-lmer(DeathDay ~ Origin + (1|PopID), family=poisson,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3raw<-lmer(DeathDay ~ Origin + (1|blank), family=poisson,data=modeldata) # Test population effect
anova(model2raw,model1raw) # mom not sig
anova(model3raw,model2raw) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
modelOraw<-lmer(DeathDay ~ (1|blank), family=poisson,data=modeldata)
anova(model3raw,modelOraw) #test for significance of origin
####Mom, Origin only####
mfmom.dk<-read.table("MatFxMom.dk.txt", header=T, sep="\t", quote='"', row.names=1)
head(mfmom.dk)
# colnames(mfmom.dk)[7]<- "Mom"
# write.table(mfmom.dk, file="MatFxMom.dk.txt", sep="\t", quote=F)
# momLR <- lapply(names(mfmom.dk)[c(17, 6)],function(n) CGtrait.LR.O(n,mfmom.dk))
# germcount by hand
####Mom, seedwt###
str(mfmom.dk)
mfmom.dk$Origin<-droplevels(mfmom.dk$Origin)
mfmom.dk$CrossNum<-as.factor(mfmom.dk$CrossNum)
modeldata<-mfmom.dk[!is.na(mfmom.dk$SeedWt),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
model1<-lmer(SeedWt ~ Origin + (1|PopID/Mom), family=gaussian,data=modeldata)
model2<-lmer(SeedWt ~ Origin +(1|PopID), family=gaussian,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3<-lmer(SeedWt ~ Origin +(1|blank), family=gaussian,data=modeldata) # Test population effect
anova(model2,model1)
anova(model3,model2) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
modelO<-lmer(SeedWt ~ (1|PopID), family=gaussian,data=modeldata)
anova(modelO,model2) #test for significance of origin - origin not sig....?
qqnorm(resid(modelO), main="Q-Q plot for residuals")
qqline(resid(modelO))
####Mom, germ count###
modeldata<-mfmom.dk[!is.na(mfmom.dk$GermCount),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
model1<-lmer(GermCount ~ Origin + SeedCount +(1|PopID/Mom), family=poisson,data=modeldata)
model2<-lmer(GermCount ~ Origin + SeedCount +(1|PopID), family=poisson, data=modeldata)
model3<-lmer(GermCount ~ Origin + SeedCount + (1|blank), family=poisson, data=modeldata)
anova(model2, model1)
anova(model3, model2)
modelS0<-lmer(GermCount ~ Origin + (1|PopID), family=poisson, data=modeldata)
anova(modelS0, model2)
# modelW<-lmer(GermCount ~ Origin + SeedCount +SeedWt+(1|PopID), family=poisson, data=modeldata)
# anova(modelW, model2)
modelO<-lmer(GermCount ~ SeedCount + (1|PopID), family=poisson, data=modeldata)
anova(modelO, model2)
model2
int<-1.103892
#inv mean
B<--0.299416
#Originnat estimate from model summary
pI<-exp(int)
pN<-exp(int+B)
pI
pN
####Mom, germ date####avg, so can't use poisson
modeldata<-mfmom.dk[!is.na(mfmom.dk$GermAvgDate),]
modeldata$blank<-1
modeldata$blank<-as.factor(modeldata$blank)
model1<-lmer(GermAvgDate ~ Origin +(1|PopID/Mom), family=gaussian,data=modeldata)
model2<-lmer(GermAvgDate ~ Origin +(1|PopID), family=gaussian,data=modeldata) # Removes maternal family variance to test if it is a significant random effect
model3<-lmer(GermAvgDate ~ Origin +(1|blank), family=gaussian,data=modeldata) # Test population effect
anova(model2, model1)
anova(model3,model2) # pop is sig. If it says there are 0 d.f. then what you want to do is a Chi-square test using the X2 value and 1 d.f. freedom to get the p value.
# modelW<-lmer(GermAvgDate ~ Origin +SeedWt+(1|PopID), family=gaussian,data=modeldata)
# anova(model2, modelW)
modelO<-lmer(GermAvgDate ~ (1|PopID), family=gaussian,data=modeldata)
anova(modelO,model2) #test for significance of origin - origin not sig....?