-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathisi.py
235 lines (205 loc) · 9.95 KB
/
isi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import time
import sys
import os
import functools
import importlib
import multiprocessing as mp
import deepdish as dd
from brian2.only import *
import brian2genn
# for the IDE:
import numpy_ as np
import spatial, model, inputs, readout
from util import brian_cleanup
from digest import get_voltage_histograms
def run_cpu(cfg, template, with_dynamics, STD, TA, mod_params, *net_args, raw_fbase=None, **device_args):
device.reinit()
device.activate(**device_args)
if with_dynamics:
Net = model.create_network(
*net_args, params=mod_params,
reset_dt=inputs.get_episode_duration(mod_params),
state_dt=cfg.params['dt'],
state_vars=['v', 'vsyn'] + [k for k,v in (('th_adapt', TA), ('u', STD), ('neuron_xr', STD)) if v])
else:
Net = model.create_network(
*net_args, params=mod_params,
reset_dt=inputs.get_episode_duration(mod_params))
rundata = readout.repeat_run(Net, mod_params, template)
rundata['raw_fbase'] = raw_fbase
Net.run(rundata['runtime'])
readout.get_results(Net, mod_params, rundata, compress=True, tmax=cfg.ISIs[0]*ms if len(cfg.ISIs)>1 else None)
return rundata
def run_genn(cfg, template, with_dynamics, STD, TA, mod_params, *net_args, raw_fbase=None, **device_args):
device.reinit()
device.activate(**device_args)
if with_dynamics:
Net = model.create_network(
*net_args, params=mod_params,
reset_dt=inputs.get_episode_duration(mod_params),
state_dt=cfg.params['dt'], state_vars=['v', 'vsyn'] + [k for k,v in (('th_adapt', TA), ('neuron_xr', STD)) if v])
else:
Net = model.create_network(
*net_args, params=mod_params,
reset_dt=inputs.get_episode_duration(mod_params))
rundata = readout.repeat_run(Net, mod_params, template)
rundata['raw_fbase'] = raw_fbase
Net.run(rundata['runtime'])
readout.get_results(Net, mod_params, rundata, compress=True, tmax=cfg.ISIs[0]*ms if len(cfg.ISIs)>1 else None)
if STD and with_dynamics:
surrogate = {k: {'t': Net[f'SpikeMon_{k}'].t[:], 'i': Net[f'SpikeMon_{k}'].i[:]} for k in ('Exc', 'Inh')}
device.reinit()
device.activate(**device_args)
mod_params_U = {**mod_params, 'tau_rec': 0*ms}
Net = model.create_network(
*net_args, params=mod_params_U,
reset_dt=inputs.get_episode_duration(mod_params_U),
state_dt=cfg.params['dt'], state_vars=['v'],
surrogate=surrogate, suffix='_surrogate')
rundata_U = readout.repeat_run(Net, mod_params_U, template)
rundata_U['raw_fbase'] = None if raw_fbase is None else f'utmp.{raw_fbase}'
Net.run(rundata_U['runtime'])
readout.get_results(Net, mod_params_U, rundata_U, compress=True, tmax=cfg.ISIs[0]*ms)
for V_pair, U_pair in zip(rundata['dynamics'], rundata_U['dynamics']):
for S in V_pair.keys():
for tp in V_pair[S].keys():
V_pair[S][tp]['u'] = U_pair[S][tp]['v']
rundata['raw_dynamics']['u'] = rundata_U['raw_dynamics']['v']
rundata['dynamic_variables'].append('u')
if raw_fbase is not None:
vfile = readout.raw_dynamics_filename(rundata_U['raw_fbase'], 'v')
ufile = readout.raw_dynamics_filename(rundata['raw_fbase'], 'u')
os.replace(vfile, ufile)
return rundata
def generate_network(cfg, rng):
params = cfg.params.copy()
params['ISI'] = cfg.stim_probe_duration if 'stim_probe_duration' in dir(cfg) else params.get('ISI', 100*ms)
params['sequence_length'], params['sequence_count'] = 1, 1
min_frac = cfg.minimum_active_fraction if 'minimum_active_fraction' in dir(cfg) else 0.5
Xstim, Ystim = spatial.create_stimulus_locations(params)
while True:
X, Y, W, D = spatial.create_weights(params, rng)
Net = model.create_network(X, Y, Xstim, Ystim, W, D, params, reset_dt=params['ISI'] + params['settling_period'])
offset = 0*second
for i in range(params['N_stimuli']):
offset = inputs.set_input_sequence(Net, [i], params, offset)
Net.run(offset)
spikes = readout.get_raw_spikes(Net, params, range(params['N_stimuli']))
frac = [(ep['pulsed_nspikes']>0).mean() for ep in spikes.values()]
sufficient_activity = all([f > min_frac for f in frac])
print(f'{sufficient_activity}\t{frac}')
if sufficient_activity:
return X, Y, W, D, Xstim, Ystim
def generate_networks(cfg, rng, start_at):
if start_at.get('templ', 0) > 0:
return
warned_about_premades = False
for net in range(cfg.N_networks):
if net < start_at.get('net', 0):
continue
elif start_at.get('newnet', True):
if 'nets' in dir(cfg) and net in cfg.nets:
res = dd.io.load(cfg.nets[net])
X, Y, W, D = res['X']*meter, res['Y']*meter, res['W'], res['D']
if not warned_about_premades:
print(f'Note: Config-supplied networks are not checked for response magnitude.')
warned_about_premades = True
else:
X, Y, W, D, Xstim, Ystim = generate_network(cfg, rng)
stimulated_neurons = spatial.get_stimulated(X, Y, Xstim, Ystim, cfg.params)
try:
dd.io.save(cfg.netfile.format(net=net), dict(X=X, Y=Y, W=W, D=D, stimulated_neurons=stimulated_neurons))
except Exception as e:
print(e)
def set_run_func(cfg):
if 'gpuid' in dir(cfg):
working_dir = f'tmp/GPU{cfg.gpuid}'
dev = 'genn'
prefs.devices.genn.cuda_backend.device_select='MANUAL'
prefs.devices.genn.cuda_backend.manual_device=cfg.gpuid
runit = run_genn
else:
working_dir = 'tmp/CPP'
dev = 'cpp_standalone'
if 'mp_cores' in dir(cfg):
ncores = cfg.mp_cores
else:
ncores = -2
if ncores < 0:
prefs.devices.cpp_standalone.openmp_threads = mp.cpu_count() + ncores
elif ncores > 0:
prefs.devices.cpp_standalone.openmp_threads = ncores
runit = run_cpu
device_args = dict(directory=working_dir)
os.makedirs(working_dir, exist_ok=True)
set_device(dev, **device_args)
return functools.partial(runit, cfg, **device_args), working_dir
if __name__ == '__main__':
cfg = importlib.import_module('.'.join(sys.argv[1].split('.')[0].split('/')))
rng = np.random.default_rng()
start_at = cfg.start_at.copy() if 'start_at' in dir(cfg) else {}
generate_networks(cfg, rng, start_at)
runit, working_dir = set_run_func(cfg)
raw_fbase = cfg.raw_fbase if hasattr(cfg, 'raw_fbase') else None
Xstim, Ystim = spatial.create_stimulus_locations(cfg.params)
# Set up input templates
if start_at.get('newtempl', True):
X, Y, W, D = spatial.create_weights(cfg.params, rng)
Net = model.create_network(X, Y, Xstim, Ystim, W, D, cfg.params, reset_dt=inputs.get_episode_duration(cfg.params))
templates = [readout.setup_run(Net, cfg.params, rng, cfg.stimuli, cfg.pairings) for _ in range(cfg.N_templates)]
if (start_at.get('net', 0) != 0
or start_at.get('STD', cfg.STDs[0]) != cfg.STDs[0]
or start_at.get('TA', cfg.TAs[0]) != cfg.TAs[0]
or start_at.get('isi', cfg.ISIs[0]) != cfg.ISIs[0]):
templ = start_at.get('templ', 0)
preset = readout.load_results(cfg.fname.format(templ=templ, net=0, STD=cfg.STDs[0], TA=cfg.TAs[0], isi=cfg.ISIs[0]))
for key in preset.keys():
if key not in templates[templ]:
preset.pop(key)
templates[templ] = preset
else:
templates = [
readout.load_results(
cfg.fname.format(templ=templ, net=0, STD=cfg.STDs[0], TA=cfg.TAs[0], isi=cfg.ISIs[0]),
template_only=True)
for templ in range(cfg.N_templates)]
for templ, template in enumerate(templates):
if templ < start_at.get('templ', 0):
continue
else:
start_at.pop('templ', 0)
with_dynamics = templ < cfg.N_templates_with_dynamics
for net in range(cfg.N_networks):
if net < start_at.get('net', 0):
continue
else:
start_at.pop('net', 0)
try:
res = dd.io.load(cfg.netfile.format(net=net))
except Exception as e:
print(e)
X, Y, W, D = res['X']*meter, res['Y']*meter, res['W'], res['D']
for STD in cfg.STDs:
for TA in cfg.TAs:
if STD < start_at.get('STD', 0) or TA < start_at.get('TA', 0):
continue
else:
start_at.pop('STD', 0)
start_at.pop('TA', 0)
Tstart = time.time()
for iISI, isi in enumerate(cfg.ISIs):
if isi < start_at.get('isi', cfg.ISIs[0]):
continue
else:
start_at.pop('isi', 0)
mod_params = {**cfg.params, 'ISI': isi*ms,
'tau_rec': (0*ms, cfg.params['tau_rec'])[STD],
'th_ampl': (0*mV, cfg.params['th_ampl'])[TA]}
rundata = runit(template, with_dynamics, STD, TA, mod_params, X, Y, Xstim, Ystim, W, D,
raw_fbase=None if raw_fbase is None else raw_fbase.format(**locals()))
try:
readout.save_results(cfg.fname.format(**locals()), rundata)
except Exception as e:
print(e)
brian_cleanup(working_dir)
print(f'Completed ISI sweep (templ {templ}, net {net}, STD {STD}, TA {TA}) after {(time.time()-Tstart)/60:.1f} minutes.')