diff --git a/keras_applications/densenet.py b/keras_applications/densenet.py index d5d33d9..ca0c7f6 100644 --- a/keras_applications/densenet.py +++ b/keras_applications/densenet.py @@ -32,8 +32,8 @@ BASE_WEIGTHS_PATH = ( - 'https://github.com/fchollet/deep-learning-models/' - 'releases/download/v0.8/') + 'https://github.com/keras-team/keras-applications/' + 'releases/download/densenet/') DENSENET121_WEIGHT_PATH = ( BASE_WEIGTHS_PATH + 'densenet121_weights_tf_dim_ordering_tf_kernels.h5') @@ -253,38 +253,38 @@ def DenseNet(blocks, 'densenet121_weights_tf_dim_ordering_tf_kernels.h5', DENSENET121_WEIGHT_PATH, cache_subdir='models', - file_hash='0962ca643bae20f9b6771cb844dca3b0') + file_hash='9d60b8095a5708f2dcce2bca79d332c7') elif blocks == [6, 12, 32, 32]: weights_path = keras_utils.get_file( 'densenet169_weights_tf_dim_ordering_tf_kernels.h5', DENSENET169_WEIGHT_PATH, cache_subdir='models', - file_hash='bcf9965cf5064a5f9eb6d7dc69386f43') + file_hash='d699b8f76981ab1b30698df4c175e90b') elif blocks == [6, 12, 48, 32]: weights_path = keras_utils.get_file( 'densenet201_weights_tf_dim_ordering_tf_kernels.h5', DENSENET201_WEIGHT_PATH, cache_subdir='models', - file_hash='7bb75edd58cb43163be7e0005fbe95ef') + file_hash='1ceb130c1ea1b78c3bf6114dbdfd8807') else: if blocks == [6, 12, 24, 16]: weights_path = keras_utils.get_file( 'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5', DENSENET121_WEIGHT_PATH_NO_TOP, cache_subdir='models', - file_hash='4912a53fbd2a69346e7f2c0b5ec8c6d3') + file_hash='30ee3e1110167f948a6b9946edeeb738') elif blocks == [6, 12, 32, 32]: weights_path = keras_utils.get_file( 'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5', DENSENET169_WEIGHT_PATH_NO_TOP, cache_subdir='models', - file_hash='50662582284e4cf834ce40ab4dfa58c6') + file_hash='b8c4d4c20dd625c148057b9ff1c1176b') elif blocks == [6, 12, 48, 32]: weights_path = keras_utils.get_file( 'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5', DENSENET201_WEIGHT_PATH_NO_TOP, cache_subdir='models', - file_hash='1c2de60ee40562448dbac34a0737e798') + file_hash='c13680b51ded0fb44dff2d8f86ac8bb1') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights)