-
Notifications
You must be signed in to change notification settings - Fork 0
/
Mercedes-Benz Greener Manufacturing.py
195 lines (120 loc) · 3.8 KB
/
Mercedes-Benz Greener Manufacturing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# Create an ML algorithm that can accurately predict the time a car will spend on the test bench
# based on the vehicle configuration
# Credentials - [email protected] / karan sharma
# Agenda
# 1. If for any column(s), the variance is equal to zero, then you need to remove those variable(s)
# 2. Check for null and unique values for test and train sets
# 3. Apply label encoder for categorical variables
# 4. Perform dimensaionlity reduction with PCA
# 5. Predict the test_df values using xgboost
# In[2]:
# Importing the required libraries
# Loading the train/test data
# The lowercase alphabets are categorical variables
import numpy as np
import pandas as pd
train = pd.read_csv('C://Datasets//MERCtrain.csv')
train.head()
# train.info()
# print('Size of training set')
# train.shape
# In[3]:
# Separating y column as this is for pediction output
y_train = train['y'].values
y_train
# In[4]:
# A lot of columns that have an X
# Let's check for the same
# 376 features with X
colums_x = [c for c in train.columns if 'X' in c]
# colums_x
print(len(colums_x))
print(train[colums_x].dtypes.value_counts())
# In[5]:
# Looking at the test datset for simiilar features
test = pd.read_csv('C://Datasets//MERCtest.csv')
test.head()
# train.info()
# print('Size of training set')
# train.shape
# In[6]:
# Creating the final dataset
# Removing unwanted columns (ID); y has been removed earlier
final_column = list(set(train.columns) - set(['ID', 'y']))
x_train = train[final_column]
# x_train
x_test = test[final_column]
# x_test
# In[7]:
# Searching for null values
# Creating a function for the same
# There are no missin values
def detect(df):
if df.isnull().any().any():
print("Yes")
else:
print("No")
detect(x_train)
detect(x_test)
# In[8]:
# Removal of columns with a variance of 0
# Column with a variance of 1 is irrelevant so we drop it
for column in final_column:
check = len(np.unique(x_train[column]))
if check == 1:
x_train.drop(column, axis = 1)
x_test.drop(column, axis = 1)
if check > 2: # Column is categorical; hence mapping to ordinal measure of value
mapit = lambda x: sum([ord(digit) for digit in x])
x_train[column] = x_train[column].apply(mapit)
x_test[column] = x_test[column].apply(mapit)
x_train.head()
# In[9]:
# Performing dimensionality reduction with principal components analysis
from sklearn.decomposition import PCA
n_comp = 12
pca = PCA(n_components = n_comp, random_state = 42)
pca_result_train = pca.fit_transform(x_train)
pca_result_test = pca.transform(x_test)
# print(pca_result_train)
# print(pca_result_test)
# In[10]:
# ML Modeling with XGboost
import xgboost as xgb
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
# Splitting the data by 80/20
x_train, x_valid, y_train, y_valid = train_test_split(pca_result_train, y_train, test_size = 0.2, random_state = 42)
# In[11]:
# Building the final feature set
f_train = xgb.DMatrix(x_train, label = y_train)
f_valid = xgb.DMatrix(x_valid, label = y_valid)
f_test = xgb.DMatrix(x_test)
f_test = xgb.DMatrix(pca_result_test)
# In[12]:
# Setting the parameters for XGB
params = {}
params['objective'] = 'reg:linear'
params['eta'] = 0.02
params['max_depth'] = 4
# In[13]:
# Predicting the score
# Creating a function for the same
def scorer(m, w):
labels = w.get_label()
return 'r2', r2_score(labels, m)
final_set = [(f_train, 'train'), (f_valid, 'valid')]
P = xgb.train(params, f_train, 1000, final_set, early_stopping_rounds=50, feval=scorer, maximize=True, verbose_eval=10)
# In[14]:
# Predicting on test set
p_test = P.predict(f_test)
p_test
# In[15]:
Predicted_Data = pd.DataFrame()
Predicted_Data['y'] = p_test
Predicted_Data.head()
# In[16]:
# Thank You :)