-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMLP2.py
95 lines (75 loc) · 2.85 KB
/
MLP2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
import copy
# get data
data = pd.read_csv('processedgames.csv')
#data = data[::-1] #reverses the order of the dataframe
data.columns = pd.MultiIndex.from_tuples([col, ''] for col in data.columns)
data = data.drop(columns=['SEASON'])
inputs = data.drop(columns=['HOME_TEAM_WINS'])
labels = data['HOME_TEAM_WINS']
input_train, input_test, label_train, label_test = train_test_split(inputs, labels, test_size = 0.25, random_state=42)
batch_size = 64
# convert to torch tensors
input_train = th.tensor(input_train.values, dtype=th.float32)
input_test = th.tensor(input_test.values, dtype=th.float32)
label_train = th.tensor(label_train.values, dtype=th.float32)
label_test = th.tensor(label_test.values, dtype=th.float32)
#print(input_train)
# training and testing data
train_data = TensorDataset(input_train, label_train)
train_dataloader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_data = TensorDataset(input_test, label_test)
test_dataloader = DataLoader(test_data, batch_size=batch_size, shuffle=True)
class NeuralNetwork(nn.Module):
def __init__(self, input, h1, h2,output):
super(NeuralNetwork, self).__init__()
self.fc1 = nn.Linear(input, h1)
self.fc2 = nn.Linear(h1, h2)
self.fc3 = nn.Linear(h2, output)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
return x
input_dim = 14
h1_dim = 64
h2_dim = 64
output_dim = 1
model = NeuralNetwork(input_dim, h1_dim, h2_dim, output_dim)
loss_fn = nn.BCELoss()
optimizer = th.optim.Adam(model.parameters(), lr=0.001)
num_epochs = 100
# training
for epoch in range(num_epochs):
for inputs, labels in train_dataloader:
#labels = labels.to(th.long)
optimizer.zero_grad()
pred = model(inputs)
loss = loss_fn(pred.view(-1), labels)
loss.backward()
optimizer.step()
#1 means home team won
#column 2 will represent home team wins and column 1 will represent away team wins
# prediction
total = 0
correct = 0
with th.no_grad():
for inputs, labels in test_dataloader:
labels = labels.to(th.long)
correctedpredictions = th.empty(labels.size())
outputs = model(inputs)
predicted = (outputs >=0.5).float()
total += labels.size(0)
for row in range(predicted.size(0)):
if(predicted[row]>0.5):
correctedpredictions[row] = 1
else:
correctedpredictions[row] = 0
correct += (correctedpredictions == labels).sum().item()
print(f'Accuracy of the network on the tests: {100 * correct // total}%')