-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformers.py
65 lines (46 loc) · 1.72 KB
/
transformers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import random
import numpy as np
import constants
class Normalizer:
def __call__(self, sample):
# return (sample - constants.DATA_MEAN) / constants.DATA_STD
return (sample - constants.DATA_MAX) / (constants.DATA_MAX - constants.DATA_MIN)
class RandomWhiteNoise:
def __init__(self, min_value, max_value):
self._min = min_value
self._max = max_value
def __call__(self, sample):
noise = np.random.uniform(self._min, self._max)
return sample + noise
class MultiplicativeNoise:
def __init__(self, min_value, max_value):
self._min = min_value
self._max = max_value
def __call__(self, sample):
noise = np.random.uniform(self._min, self._max)
return sample * noise
class RandomVerticalFlip:
def __init__(self, p: float = 0.5):
self._p = p
def __call__(self, sample):
if random.random() < self._p:
sample = np.flip(sample, axis=1).copy()
return sample
class RandomBrightness:
def __init__(self, min_value: float, max_value: float):
self._min_value = min_value
self._max_value = max_value
def __call__(self, sample):
add = np.random.uniform(self._min_value, self._max_value)
sample = sample + add
sample = np.clip(sample, constants.DATA_MIN, constants.DATA_MAX)
return sample
class RandomContrast:
def __init__(self, min_value: float, max_value: float):
self._min_value = min_value
self._max_value = max_value
def __call__(self, sample):
mult = np.random.uniform(self._min_value, self._max_value)
sample = sample * mult
sample = np.clip(sample, constants.DATA_MIN, constants.DATA_MAX)
return sample