-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdiploe_thickness_github.py
310 lines (285 loc) · 15.9 KB
/
diploe_thickness_github.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#script runs segmentation effects, converts to model, and creates a thickness map using binarythinning and danielssondistance algorithms
import os
import SimpleITK as sitk
import sitkUtils
import time
#threshold settings
thresholdskull_lwr = 333
thresholddiploe_lwr = 95
thresholddiploe_uppr = 1000
class diploeprocess():
#Go to Segment editor
#“Add” new Segment called “skull” and change color to “Bone”
#“Add” a second segment, rename “diploe”, and change color to “Cartilage”
def connect(self):
"""
Connects the segmentation and volume nodes together in preparation for subsequent functions. Adds a segmentation node to the scene
"""
global masterVolumeNode
global segmentationNode
global segmentEditorNode
global segmentEditorWidget
#Connect the volumes and segmentation to allow programatic access to model-segmentation conversion and segmentation effects
masterVolumeNode = slicer.mrmlScene.GetNthNodeByClass(0, 'vtkMRMLScalarVolumeNode')#detects the first scalar volume
numseg = len(slicer.util.getNodesByClass('vtkMRMLSegmentationNode'))#number of segmentations in scene
if numseg == 0:
print("new segmentation created")
segmentationNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLSegmentationNode")
segmentationNode.CreateDefaultDisplayNodes() # only needed for display
segmentationNode.SetReferenceImageGeometryParameterFromVolumeNode(masterVolumeNode)
segmentationNode.GetSegmentation().AddEmptySegment("skull")
segmentationNode.GetSegmentation().AddEmptySegment("diploe")
else:
print("Segment effect widget connected to first segmentation in scene")
segmentationNode = slicer.util.getNodesByClass('vtkMRMLSegmentationNode')[0]
segmentationNode.CreateDefaultDisplayNodes() # only needed for display
segmentationNode.SetReferenceImageGeometryParameterFromVolumeNode(masterVolumeNode)
segmentEditorNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLSegmentEditorNode")
# Create segment editor to get access to effects
segmentEditorWidget = slicer.qMRMLSegmentEditorWidget()
# To show segment editor widget (useful for debugging): segmentEditorWidget.show()
segmentEditorWidget.setMRMLScene(slicer.mrmlScene)
segmentEditorNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLSegmentEditorNode")
segmentEditorWidget.setMRMLSegmentEditorNode(segmentEditorNode)
segmentEditorWidget.setSegmentationNode(segmentationNode)
segmentEditorWidget.setSourceVolumeNode(masterVolumeNode)
segmentationNode.GetSegmentation().GetSegment('skull').SetColor(0.9450980392156862, 0.8392156862745098, 0.5686274509803921) # color should be set in segmentation node
segmentationNode.GetSegmentation().GetSegment('diploe').SetColor(0.43529411764705883, 0.7215686274509804, 0.8235294117647058)
#Threshold “skull” using the range 333-max (max is ~2916 for the sample volume I will send, most range from 2900-3100) and Apply
#threshold
def skull_thresh(self):
"""
threshold skull at 333-max
"""
global volumeScalarRange
volumeScalarRange= masterVolumeNode.GetImageData().GetScalarRange()#get scalar range so max value is used
segmentEditorWidget.setActiveEffectByName('Threshold')
effect = segmentEditorWidget.activeEffect()
segmentEditorNode.SetSelectedSegmentID('skull')
effect.setParameter("MinimumThreshold", str(thresholdskull_lwr))#lo
effect.setParameter("MaximumThreshold",str(volumeScalarRange[1]))
effect.self().onApply()
print(f'skull segment threshold at {thresholdskull_lwr}-{volumeScalarRange[1]}(lower-upper)')
#Keep Largest Island and Apply everywhere, overwrite all
def keeplargestisland(self):
"""
keep largest island, overwrite all
"""
segmentEditorNode.SetOverwriteMode(slicer.vtkMRMLSegmentEditorNode.OverwriteAllSegments)
#run keep largest island on thresholded columella
segmentEditorWidget.setActiveEffectByName("Islands")
effect = segmentEditorWidget.activeEffect()
segmentEditorNode.SetSelectedSegmentID('skull')
effect.setParameterDefault("Operation", "KEEP_LARGEST_ISLAND")
effect.self().onApply()#apply separate
#Smoothing —> Closing (fill holes) 3mm everywhere, overwrite all, Apply
def smooth_close_holes(self, mm):
segmentEditorNode.SetOverwriteMode(slicer.vtkMRMLSegmentEditorNode.OverwriteAllSegments)
segmentEditorWidget.setActiveEffectByName("Smoothing")
effect = segmentEditorWidget.activeEffect()
segmentEditorNode.SetSelectedSegmentID('skull')
effect.setParameter("SmoothingMethod", "MORPHOLOGICAL_CLOSING")
effect.setParameter("KernelSizeMm", mm)
effect.self().onApply()
print(f'closing holes on "skulls" segment at kernel size of {mm}mm')
#Smoothing —> Gaussian 1mm everywhere, overwrite all, Apply
def smooth_gaussian(self, mm):
segmentEditorNode.SetOverwriteMode(slicer.vtkMRMLSegmentEditorNode.OverwriteAllSegments)
segmentEditorWidget.setActiveEffectByName("Smoothing")
effect = segmentEditorWidget.activeEffect()
segmentEditorNode.SetSelectedSegmentID('skull')
effect.setParameter("SmoothingMethod", "GAUSSIAN")
effect.setParameter("GaussianStandardDeviationMm", mm)
effect.self().onApply()
print(f'gaussian smoothing run on "skulls" segment at standard deviation of {mm}mm')
####DIPLOE SEGMENTATION##########
#Use the Logical Operators tool to make “diploe” a copy of “skull”
def copy_skull(self):
segmentEditorWidget.setActiveEffectByName('Logical operators')
effect = segmentEditorWidget.activeEffect()
segmentEditorNode.SetSelectedSegmentID('diploe')
effect.setParameter("Operation", "COPY")
effect.setParameter("ModifierSegmentID", 'skull')#copy this selection
effect.self().onApply()
print('copy created from skull to diploe')
#Threshold “diploe” using the range 95-1000
#Editable area is “inside diploe”
#Modify other segments: “Allow overlap”
#Apply
#threshold
#https://apidocs.slicer.org/master/vtkMRMLSegmentationNode_8h_source.html#l00159 mask mode reference
def diploe_thresh(self):
segmentEditorNode.SetOverwriteMode(slicer.vtkMRMLSegmentEditorNode.OverwriteNone)
segmentEditorNode.SetMaskSegmentID('diploe')#editable area inside diploe
segmentEditorNode.SetMaskMode(5)#slicer.vtkMRMLSegmentEditorNode.PaintAllowedInsideSingleSegment
segmentEditorNode.SetSelectedSegmentID('diploe')
segmentEditorWidget.setActiveEffectByName('Threshold')
effect = segmentEditorWidget.activeEffect()
effect.setParameter("MinimumThreshold", str(thresholddiploe_lwr))#lo
effect.setParameter("MaximumThreshold",str(thresholddiploe_uppr))
effect.self().onApply()
print(f'skull segment threshold at {thresholddiploe_lwr}-{thresholddiploe_uppr}(lower-upper)')
#Smoothing —> Gaussian 1mm inside diploe only, allow overlap, Apply
def smooth_gaussian_diploe(self, mm):
segmentEditorNode.SetOverwriteMode(slicer.vtkMRMLSegmentEditorNode.OverwriteNone)
segmentEditorWidget.setActiveEffectByName("Smoothing")
effect = segmentEditorWidget.activeEffect()
segmentEditorNode.SetSelectedSegmentID('diploe')
effect.setParameter("SmoothingMethod", "GAUSSIAN")
effect.setParameter("GaussianStandardDeviationMm", mm)
effect.self().onApply()
print(f'gaussian smoothing run on "diploe" segment at standard deviation of {mm}mm')
def export_to_models(self):
segmentationNode = getNode("Segmentation")
self.shNode = slicer.mrmlScene.GetSubjectHierarchyNode()
exportFolderItemId = self.shNode.CreateFolderItem(self.shNode.GetSceneItemID(), "Segments")
slicer.modules.segmentations.logic().ExportAllSegmentsToModels(segmentationNode, exportFolderItemId)
#- Export ONLY “diploe” segment as a labelmap
def export_diploe(self):
self.labelmapVolumeNode = slicer.mrmlScene.AddNewNodeByClass('vtkMRMLLabelMapVolumeNode','diploe_labelmap')
##make all segment non-visible except seg of interest
segmentationNode.GetDisplayNode().SetAllSegmentsVisibility(0)#make all
segmentationNode.GetDisplayNode().SetSegmentVisibility('diploe',1)
slicer.modules.segmentations.logic().ExportVisibleSegmentsToLabelmapNode(segmentationNode, self.labelmapVolumeNode, masterVolumeNode)
#######################2. Apply Simple Filter###########################
#- Go to Filtering —> Simple Filters module
#- Filter: BinaryThinningImageFilter
#- input volume: Segmentation-label
#- output volume: Create new volume
#- Apply (on my computer this step takes the longest, around ~180s)
def apply_binary_thinning(self):
# Get input volume node
self.inputVolumeNode_label = slicer.util.getNode('diploe_labelmap')#the string here is what you have the labelmap named as
# Create new volume node for output
self.binarythinning_outputVolumeNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLLabelMapVolumeNode", "BinaryThinningImageFilter Output")#second string is name you give it
# Run filter
inputImage = sitkUtils.PullVolumeFromSlicer(self.inputVolumeNode_label)
filter = sitk.BinaryThinningImageFilter()
outputImage = filter.Execute(inputImage)
sitkUtils.PushVolumeToSlicer(outputImage, self.binarythinning_outputVolumeNode)
print('binary filter applied')
#################################3. Apply Danielsson Filter###############################
#- In the same module, change filter to DanielssonDistanceMapImageFilter
#- input volume: BinaryThinningImageFilter Output
#- output volume: Create new volume
#- Check first box (“Input is binary”) and third box (“Use image spacing”)
#- Apply
#############################Create a distance map from the medial surface using the DanielssonDistanceMapImageFilter ###############3
### with options Input is Binary = Yes and Use Image Spacing=Yes
# Get input volume node
def apply_danielsson_filter(self):
self.inputVolumeNode_label = slicer.util.getNode("BinaryThinningImageFilter Output")#the string here "binarythinning_filter" is what you are naming the labelmap
# Create new volume node for output
self.DanielssonDistanceMap_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLScalarVolumeNode", "DanielssonDistanceMapImageFilter Output")#second string is name you give it
# Run filter
inputImage = sitkUtils.PullVolumeFromSlicer(self.inputVolumeNode_label)
filter = sitk.DanielssonDistanceMapImageFilter()
filter.InputIsBinaryOn()#input is binary,
filter.SetUseImageSpacing(True)#use image spaceing
outputImage = filter.Execute(inputImage)
sitkUtils.PushVolumeToSlicer(outputImage, self.DanielssonDistanceMap_node)
print('Danielsson filter applied')
###########################################4. Probe Volume with Model###########################
#- Go to module Surface Models —> Probe Volume with Model
#- input volume: DanielssonDistanceMapImageFilter Output
#- input model: diploe
#- output model: Create new Model as “distance_model”
#- Output array name: NRRD Image
#- Apply
def createprobevoltomodel(self):
"""create texture on model using CLI module"""
# Set parameters
parameters = {}
parameters["InputVolume"] = getNode("DanielssonDistanceMapImageFilter Output")#input volume [image]
parameters["InputModel"] = slicer.mrmlScene.GetNthNodeByClass(4,'vtkMRMLModelNode')#diplo should be second model (after 3 slice models)
parameters["OutputArrayName"] = "NRRD Image"
self.outputModelNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLModelNode","distance_model")
parameters["OutputModel"] = self.outputModelNode
#parameters of CLU module
#Group: IO
# InputVolume [image]: Input volume
# InputModel [geometry]: Input model
# OutputModel [geometry]: Output model
# OutputArrayName [string]: Output array name
# Execute
grayMaker = slicer.modules.probevolumewithmodel
cliNode = slicer.cli.runSync(grayMaker, None, parameters)
# Process results
if cliNode.GetStatus() & cliNode.ErrorsMask:
# error
errorText = cliNode.GetErrorText()
slicer.mrmlScene.RemoveNode(cliNode)
raise ValueError("CLI execution failed: " + errorText)
# success
slicer.mrmlScene.RemoveNode(cliNode)
return self.outputModelNode
#############################
#make a list of the sub-folders of the maindirectory (basedir)
dir_list = os.listdir(base_directory)#list contents of root directory
directories = [item for item in os.listdir(base_directory) if os.path.isdir(os.path.join(base_directory, item))]#only select folders, not files
# make list of folder names saved as 'full_path'
full_path_folders = []
for folder in directories:
joinedpth = os.path.join(base_directory, folder)
full_path_folders.append(joinedpth)
#################loop folders, open volumes, process, and export mrb and individual data nodes to same folder as original volume #####33
for i in range(0,len(full_path_folders)):
volinside = os.listdir(full_path_folders[i])
volinside = [file for file in volinside if file.endswith('.nrrd')]#select only nrrd files
#print(volinside[0])
volpath = f'{full_path_folders[i]}\\{volinside[0]}'#get first nrrd file
print(volpath)
#load volume
loadedVolumeNode = slicer.util.loadVolume(rf'{volpath}')
print(f'loaded following volume: {volpath}')
#instantiation of segmentation
dp = diploeprocess()
dp.connect()
#skull segmentation
dp.skull_thresh()
dp.keeplargestisland()
dp.smooth_close_holes(3)
dp.smooth_gaussian(1)
dp.keeplargestisland()
#diploe segmentation
dp.copy_skull()
dp.diploe_thresh()
dp.smooth_gaussian_diploe(1)
#distancemodelling
dp.export_to_models()#Export both “skull” and “diploe” as models
dp.export_diploe()
dp.apply_binary_thinning()
dp.apply_danielsson_filter()
dp.createprobevoltomodel()#run the function and generate the model
#export
sceneSaveFilename = os.path.dirname(volpath) + "/saved-scene-" + time.strftime("%Y%m%d-%H%M%S") + ".mrb"
################################### Save scene ########################
if slicer.util.saveScene(sceneSaveFilename):
logging.info("Scene saved to: {0}".format(sceneSaveFilename))
print('Scene saved to mrb file')
else:
logging.error("Scene saving failed")
############################### export individual nodes ############################
#- Color Table
#- Segmentations.seg.nrrd
#- skull.vtk
#- diploe.vtk
#- Segmentation-label.nrrd
#- Segmentation-label Color Table
#- BinaryThinningImageFilter Output.nrrd
#- DanielssonDistanceMapImageFilter Output.nrrd
#- distance_model.v
slicer.util.exportNode(segmentationNode,os.path.dirname(volpath)+"\\Segmentations.seg.nrrd")#-
slicer.util.exportNode(slicer.mrmlScene.GetNthNodeByClass(3,'vtkMRMLModelNode'),os.path.dirname(volpath)+"\\skull.vtk")#-
slicer.util.exportNode(slicer.mrmlScene.GetNthNodeByClass(4,'vtkMRMLModelNode'),os.path.dirname(volpath)+"\\diploe.vtk")#-
slicer.util.exportNode(dp.labelmapVolumeNode,os.path.dirname(volpath)+"\\Segmentation-label.nrrd")#-
slicer.util.exportNode(slicer.util.getNode('diploe_labelmap_ColorTable'),os.path.dirname(volpath)+"\\Segmentation-label Color Table.ctbl")#-
slicer.util.exportNode(dp.binarythinning_outputVolumeNode,os.path.dirname(volpath)+"\\BinaryThinningImageFilter Output.nrrd")#-
slicer.util.exportNode(dp.DanielssonDistanceMap_node,os.path.dirname(volpath)+"\\DanielssonDistanceMapImageFilter Output.nrrd")#-
slicer.util.exportNode(dp.outputModelNode,os.path.dirname(volpath)+"\\distance_model.vtk")#-
os.path.dirname(volpath)
print(f'files exported to {full_path_folders[i]}')
#clear the scene before opening the next volume (next iteration of the loop)
slicer.mrmlScene.RemoveNode(segmentationNode)
slicer.mrmlScene.RemoveNode(segmentEditorNode)
slicer.mrmlScene.Clear(0)