Skip to content

Latest commit

 

History

History

DCGAN

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

PyTorch implementation of DCGAN.

UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS.

Modifications for Implementation

To ensure output size (64 x 64), I set kernel size, stride, padding size to 4, 2, 1, respectively.

Run Code

$ python train.py

DDP MULTI-GPUs Training

if you have multi-gpus using it to train more faster! I use it for imagenet.

$ python -m torch.distributed.launch --nproc_per_node={num gpus} --master_port={port} train_ddp.py --dataset_name 'imagenet' --dataset_path {your dataset path} --n_batch {batchsize}

Generated Images

CIFAR10

Epochs : 10 - 50

Epochs : 100, 200, 300, 500, 1000

Epochs : 1000

LSUN

Epochs : 200

IMAGENET (32 x 32 min-resized center crops)

Epochs : 200

Walking in the latent space

TODO

  • model code
  • train code
  • add model save code
  • add load check point
  • add infer code : generate samples
  • add other datasets (ImageNet)
  • add other datasets (LSUN)
  • vis results
  • add argparse for hyperparams
  • update wandb to log losses
  • update wandb to log samples
  • tqdm : progress bar
  • ddp : support multi-gpu training