-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdb_queries.py
89 lines (67 loc) · 4.16 KB
/
db_queries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from server import *
from model import *
def get_avg_rent(bedrooms, bathrooms, sqft, latlng_point):
""" Gets the average rent within search radius. """
# Search radius distance in meters. 1609 meters ~ 1 mile
SEARCH_RADIUS = 3219
# Search within + and - this amount of sqft difference
SEARCH_SQFT_RANGE = 250
try:
# Search average rent price by radius by accuracy of number of bedrooms
avg_rent_by_br = int(db.session.query(func.avg(Rental.price)).join(UnitDetails).filter((func.ST_Distance_Sphere(latlng_point, UnitDetails.latlng) < SEARCH_RADIUS) & (UnitDetails.bedrooms == bedrooms)).all()[0][0])
except TypeError:
avg_rent_by_br = 'Not enough rental data nearby to calculate an average.'
try:
# Search average rent price by radius by accuracy of sqft range per (+) or (-) 250 sqft
avg_rent_by_sqft = int(db.session.query(func.avg(Rental.price)).join(UnitDetails).filter((func.ST_Distance_Sphere(latlng_point, UnitDetails.latlng) < SEARCH_RADIUS) & (UnitDetails.sqft.between(UnitDetails.sqft - SEARCH_SQFT_RANGE, UnitDetails.sqft + SEARCH_SQFT_RANGE))).all()[0][0])
except TypeError:
avg_rent_by_sqft = 'Not enough rental data nearby to calculate an average.'
return { 'avg_rent_by_br': avg_rent_by_br, 'avg_rent_by_sqft': avg_rent_by_sqft }
def add_listing_to_db(listing):
""" Adds a unit listing to the database. """
latlng = 'POINT({} {})'.format(listing['latitude'], listing['longitude'])
price = re.sub('[^\d.]+', '', listing['price'])
try:
new_unit_details = UnitDetails(neighborhood=listing['neighborhood'],
bedrooms=listing['bedrooms'],
bathrooms=listing['bathrooms'],
sqft=listing['sqft'],
latitude=listing['latitude'],
longitude=listing['longitude'],
latlng=latlng
)
db.session.add(new_unit_details)
new_listing = Listing(zpid=listing['zpid'],
street=listing['street'],
city=listing['city'],
state=listing['state'],
zipcode=listing['zipcode'],
price=price,
hoa=listing['hoa'],
unitdetails=new_unit_details)
db.session.add(new_listing)
db.session.commit()
except:
db.session.rollback()
def find_all_listings(bounds, bedrooms, bathrooms, low_price, high_price):
""" Finds all the listings within the geocoded location range. """
# Query for the listings in the database within the latitude and
# longitude bounds of the user's search with respect to any filters
listings = db.session.query(Listing).join(UnitDetails).filter((bounds['west'] < UnitDetails.longitude), (bounds['east'] > UnitDetails.longitude), (bounds['north'] > UnitDetails.latitude), (bounds['south'] < UnitDetails.latitude), (UnitDetails.bedrooms >= bedrooms), (UnitDetails.bathrooms >= bathrooms), (Listing.price >= low_price), (Listing.price <= high_price)).all()
all_listings = []
for listing in listings:
all_listings.append({'response': 100, # found listing response
'latitude': listing.unitdetails.latitude,
'longitude': listing.unitdetails.longitude,
'street': listing.street,
'city': listing.city,
'state': listing.state,
'zipcode': listing.zipcode,
'price': listing.price,
'hoa': listing.hoa,
'bedrooms': listing.unitdetails.bedrooms,
'bathrooms': listing.unitdetails.bathrooms,
'sqft': listing.unitdetails.sqft,
'zpid': listing.zpid
})
return all_listings