Implement DQN and DDQN to solve LunarLander-v2. Implement DDPG to solve LunarLanderContinuous-v2.
The data comes from OpenAI Gym. You can get the data by installing in your conda environment:
pip install gym
Importing in your Python code:
import gym
env=gym.make('LunarLander-v2')
conda env create -f environment.yml
conda activate dqn
python dqn.py \
-m dqn.pth \
--test_only True \
--seed 20200519 \
--test_epsilon 0.001
DQN
Training ewma reward | Testing results |
DDPG
Training ewma reward | Testing results |
DDQN
Training ewma reward | Testing results |