-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_results.py
32 lines (26 loc) · 1.31 KB
/
plot_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
plt.style.use("bmh")
fig, ax = plt.subplots(1, 1)
data_frame = pd.DataFrame()
#data_frame["Accuracy"] = pd.read_csv("boosting_accuracy.csv", header=0,
# index_col=0)
data_frame["5-fold Weak Model Error"] = pd.read_csv("model_error.csv",
header=0, index_col = 0)
data_frame["5-fold Ensemble Error"] = pd.read_csv("boosting_error.csv",
header=0, index_col=0)
#data_frame["Weak Model Error"] = pd.read_csv("model_error_nok.csv", header=0,
# index_col = 0)
#data_frame["Ensemble Error"] = pd.read_csv("boosting_error_nok.csv", header=0,
# index_col=0)
ax.set_xlabel("Iterations")
ax.set_ylabel("Percentage")
data_frame.plot(ax=ax, color=[ "#D55E00", "#A60628"])
#data_frame.plot(ax=ax, color=[ "#D55E00", "#A60628", "#56B4E9", "#0072B2"],
# linewidth=1) # COMPLETE VS K-FOLD
#data_frame.plot(ax=ax, legend=False) # ACCURACY ONLY
#data_frame.plot(ax=ax, color=["#D55E00", "#A60628"]) # ERROR ONLY
#plt.suptitle("Entire dataset vs. 5-fold cross-validation")
plt.suptitle("AdaBoost with 5-fold cross-validation")
plt.show()