Skip to content

Commit de018de

Browse files
committed
A couple of fixes to index
1 parent 4d9d64c commit de018de

File tree

2 files changed

+4
-4
lines changed

2 files changed

+4
-4
lines changed

ch-der.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -518,7 +518,7 @@ \subsection{Relative minima and maxima}
518518
\begin{defn}
519519
Let $S \subset \R$ be a set and
520520
let $f \colon S \to \R$ be a function. The function $f$ is said to have
521-
a \emph{\myindex{relative maximum}}\index{minimum!relative}
521+
a \emph{\myindex{relative maximum}}\index{maximum!relative}
522522
at $c \in S$ if there exists a $\delta>0$
523523
such that for all $x \in S$ where $\abs{x-c} < \delta$
524524
we have $f(x) \leq f(c)$.
@@ -1353,7 +1353,7 @@ \subsection{Taylor's theorem}
13531353
of $f$ at $c$,
13541354
we mean that there exists a $\delta > 0$ such that $f(x) > f(c)$ for
13551355
all $x \in (c-\delta,c+\delta)$ where $x\not=c$.
1356-
A \emph{\myindex{strict relative maximum}}\index{minimum!strict relative}
1356+
A \emph{\myindex{strict relative maximum}}\index{maximum!strict relative}
13571357
is defined similarly.
13581358
Continuity of the second derivative is not needed, but the proof is more
13591359
difficult and is left as an exercise. The proof also generalizes

ch-riemann.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -119,9 +119,9 @@ \subsection{Partitions and lower and upper integrals}
119119
\inf \, \bigl\{ U(P,f) : P \text{ a partition of $[a,b]$} \bigr\} .
120120
\end{align*}
121121
We call $\underline{\int}$\glsadd{not:lowerdarboux}
122-
the \emph{\myindex{lower Darboux integral}}\index{Darboux integral!lower} and
122+
the \emph{\myindex{lower Darboux integral}} and
123123
$\overline{\int}$\glsadd{not:upperdarboux} the
124-
\emph{\myindex{upper Darboux integral}}\index{Darboux integral!upper}.
124+
\emph{\myindex{upper Darboux integral}}\index{Darboux integral}.
125125
To avoid worrying about the variable of integration,
126126
we often simply write
127127
\begin{equation*}

0 commit comments

Comments
 (0)