-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_central dogma.py
230 lines (179 loc) · 7.63 KB
/
train_central dogma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
import numpy as np
import pandas as pd
import lightning as L
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from transformers import AutoTokenizer, AutoModel, AutoModelForMaskedLM
from lightning.pytorch.callbacks import ModelCheckpoint
from lightning.pytorch.loggers import TensorBoardLogger
from torchmetrics.classification import BinaryAccuracy, BinaryAUROC
class DNADataset(Dataset):
def __init__(self, x_a: np.ndarray, x_c: np.ndarray, labels: np.ndarray, tokenizer):
super().__init__()
self.x_a = x_a
self.x_c = x_c
self.labels = labels
self.tokenizer = tokenizer
def __len__(self):
return len(self.x_a)
def __getitem__(self, idx):
x_a = self.tokenizer(
self.x_a[idx],
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=256,
)
x_a = {k: v.squeeze(0) for k, v in x_a.items()}
x_c = self.tokenizer(
self.x_c[idx],
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=256,
)
x_c = {k: v.squeeze(0) for k, v in x_c.items()}
return x_a, x_c, self.labels[idx]
class DataModule(L.LightningDataModule):
def __init__(self, batch_size: int, tokenizer):
super().__init__()
self.batch_size = batch_size
self.tokenizer = tokenizer
def setup(self, stage: str) -> None:
data = pd.read_csv("./updated_sequences_test.csv")
x_a = data["seq_a"].to_numpy()
x_c = data["seq_c"].to_numpy()
labels = data["label"].to_numpy()
perm = np.random.permutation(len(data))
x_a = x_a[perm]
x_c = x_c[perm]
labels = labels[perm]
train_size = int(0.8 * len(data))
train_x_a = x_a[:train_size]
train_x_c = x_c[:train_size]
train_labels = labels[:train_size]
val_x_a = x_a[train_size:]
val_x_c = x_c[train_size:]
val_labels = labels[train_size:]
self.train_dataset = DNADataset(train_x_a, train_x_c, train_labels, self.tokenizer)
self.val_dataset = DNADataset(val_x_a, val_x_c, val_labels, self.tokenizer)
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
num_workers=8,
shuffle=True,
pin_memory=True,
)
def val_dataloader(self):
return DataLoader(
self.val_dataset,
batch_size=self.batch_size,
num_workers=8,
pin_memory=True,
)
class SeqClassifier(L.LightningModule):
def __init__(self, encoder):
super().__init__()
self.encoder = encoder
if hasattr(self.encoder.config, "d_model"):
hidden_size = self.encoder.config.d_model
elif hasattr(self.encoder.config, "hidden_size"):
hidden_size = self.encoder.config.hidden_size
else:
raise ValueError("Unknown hidden size")
self.classifier = nn.Linear(hidden_size * 2, 2)
self.train_acc = BinaryAccuracy()
self.val_acc = BinaryAccuracy()
self.train_auroc = BinaryAUROC()
self.val_auroc = BinaryAUROC()
for p in self.encoder.parameters():
p.requires_grad = False
def forward(self, x_a, x_c) -> torch.Tensor:
with torch.no_grad():
self.encoder.eval()
hidden_states_a = self.encoder(**x_a)[0]
hidden_states_c = self.encoder(**x_c)[0]
# 获取平均嵌入
embedding_a = torch.mean(hidden_states_a, dim=1)
embedding_c = torch.mean(hidden_states_c, dim=1)
# 连接嵌入
combined_embeddings = torch.cat((embedding_a, embedding_c), dim=1)
# 通过线性层进行分类
logits = self.classifier(combined_embeddings)
return logits
def training_step(self, batch, batch_idx):
x_a, x_c, labels = batch
logits = self(x_a, x_c)
loss = F.cross_entropy(logits, labels)
self.log("train_loss", loss, on_step=True, on_epoch=True, prog_bar=True)
preds = torch.argmax(logits, dim=1)
self.train_acc(preds, labels)
self.train_auroc(preds, labels)
return loss
def on_train_epoch_end(self):
self.log("train_acc", self.train_acc.compute(), on_epoch=True, prog_bar=True)
self.log("train_auroc", self.train_auroc.compute(), on_epoch=True, prog_bar=True)
def validation_step(self, batch, batch_idx):
x_a, x_c, labels = batch
logits = self(x_a, x_c)
loss = F.cross_entropy(logits, labels)
self.log("val_loss", loss, on_step=True, on_epoch=True, prog_bar=True)
preds = torch.argmax(logits, dim=1)
self.val_acc(preds, labels)
self.val_auroc(preds, labels)
return loss
def on_validation_epoch_end(self):
self.log("val_acc", self.val_acc.compute(), on_epoch=True, prog_bar=True)
self.log("val_auroc", self.val_auroc.compute(), on_epoch=True, prog_bar=True)
def configure_optimizers(self):
return torch.optim.AdamW(self.classifier.parameters(), lr=1e-4)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, default="DNABERT")
args = parser.parse_args()
model_name = args.model_name
if model_name == "DNABERT":
tokenizer = AutoTokenizer.from_pretrained("zhihan1996/DNA_bert_6", trust_remote_code=True)
encoder = AutoModel.from_pretrained("zhihan1996/DNA_bert_6", trust_remote_code=True)
elif model_name == "DNABERT2":
tokenizer = AutoTokenizer.from_pretrained("vivym/DNABERT-2-117M", trust_remote_code=True)
encoder = AutoModel.from_pretrained("vivym/DNABERT-2-117M", trust_remote_code=True)
elif model_name == "GENA_LM":
tokenizer = AutoTokenizer.from_pretrained("AIRI-Institute/gena-lm-bert-base-t2t", trust_remote_code=True)
encoder = AutoModel.from_pretrained("AIRI-Institute/gena-lm-bert-base-t2t", trust_remote_code=True)
encoder = encoder.bert
elif model_name == "Caduceus":
tokenizer = AutoTokenizer.from_pretrained("kuleshov-group/caduceus-ph_seqlen-131k_d_model-256_n_layer-16", trust_remote_code=True)
encoder = AutoModel.from_pretrained("kuleshov-group/caduceus-ph_seqlen-131k_d_model-256_n_layer-16", trust_remote_code=True)
elif model_name == "HyenaDNA":
tokenizer = AutoTokenizer.from_pretrained("LongSafari/hyenadna-medium-160k-seqlen-hf", trust_remote_code=True)
encoder = AutoModel.from_pretrained("LongSafari/hyenadna-medium-160k-seqlen-hf", trust_remote_code=True)
elif model_name == "NT":
tokenizer = AutoTokenizer.from_pretrained("InstaDeepAI/nucleotide-transformer-v2-100m-multi-species", trust_remote_code=True)
encoder = AutoModelForMaskedLM.from_pretrained("InstaDeepAI/nucleotide-transformer-v2-100m-multi-species", trust_remote_code=True).esm
else:
raise ValueError(f"Unknown model name: {model_name}")
trainer = L.Trainer(
max_epochs=50,
devices=1,
callbacks=[
ModelCheckpoint(
monitor="val_acc",
mode="max",
save_top_k=5,
save_weights_only=True,
filename='{epoch}-{val_acc:.2f}',
),
],
logger=TensorBoardLogger("logs", name=model_name),
precision=16,
)
dm = DataModule(batch_size=256, tokenizer=tokenizer)
model = SeqClassifier(encoder)
trainer.fit(model, dm)
if __name__ == "__main__":
main()