-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathRBFInterpolation.nb
703 lines (678 loc) · 34.1 KB
/
RBFInterpolation.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 9.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 34743, 694]
NotebookOptionsPosition[ 33831, 659]
NotebookOutlinePosition[ 34167, 674]
CellTagsIndexPosition[ 34124, 671]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Needs", "[", "\"\<Obtuse`\>\"", "]"}], ";"}]], "Input",
CellChangeTimes->{{3.609065470877453*^9, 3.609065507095215*^9}}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"General", "::", "compat"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Combinatorica Graph and Permutations functionality has \
been superseded by preloaded functionality. The package now being loaded may \
conflict with this. Please see the Compatibility Guide for details.\"\>"}]], \
"Message", "MSG",
CellChangeTimes->{3.609086105505333*^9, 3.609170053495791*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"RadialBasisFunction", "::", "shdw"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Symbol \[NoBreak]\\!\\(\\\"RadialBasisFunction\\\"\\)\
\[NoBreak] appears in multiple contexts \[NoBreak]\\!\\({\\\"Obtuse`\\\", \
\\\"Global`\\\"}\\)\[NoBreak]; definitions in context \
\[NoBreak]\\!\\(\\\"Obtuse`\\\"\\)\[NoBreak] may shadow or be shadowed by \
other definitions. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\
\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/General/shdw\\\", ButtonNote -> \
\\\"Obtuse`RadialBasisFunction::shdw\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.609086105505333*^9, 3.609170054002097*^9}]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.6090656338199043`*^9, 3.609065642498605*^9}, {
3.609066009085981*^9, 3.609066021759449*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"piece", "=",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.5", ",",
RowBox[{"x", "<", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",",
RowBox[{"x", "\[GreaterEqual]", "1"}]}], "}"}]}], "}"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"data", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"%", "/.",
RowBox[{"x", "\[Rule]", "t"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"Range", "[",
RowBox[{"0.5", ",", "1.5", ",", "0.1"}], "]"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"pieceplot", "=",
RowBox[{"Plot", "[",
RowBox[{"piece", ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "2"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dataplot", "=",
RowBox[{"ListPlot", "[", "data", "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"pieceplot", ",", "dataplot", ",", " ",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "1.5"}], "}"}]}]}],
"]"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.609066648822158*^9, 3.609066817475203*^9}, {
3.609067022955077*^9, 3.6090670687242813`*^9}, {3.609067105973427*^9,
3.609067270060095*^9}, 3.609086485651791*^9, {3.60908655218044*^9,
3.609086553571752*^9}, {3.609086652214106*^9, 3.6090866529863567`*^9}, {
3.6090867187861967`*^9, 3.609086743832542*^9}, {3.609086877810178*^9,
3.60908687825445*^9}, {3.6091699353935947`*^9, 3.609169948481432*^9}, {
3.609169986797483*^9, 3.609170026120161*^9}}],
Cell[BoxData[
GraphicsBox[{{{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJxTTMoPSmViYGCQBWIQ7ZX64uKBl6l2DGDwwH6BqH9bl+QUexi/kWOzeqfk
Ejg/InLh+g8ft8D53P8bY9zl9sP5qoHvXhzuPgLnl5+ztJ/x5SScL75F8B4j
43k4f9sj5zPnbS7B+Yey5kpHvrkC539Vs+Vfm3sdzmf6uVpAWvUWnG/2P2Fb
8Lo7cP6ZFpNzx7Tuw/nyE17/XPnuAZz/+vv9e1cNHsH5S17tPsXX9xjO55Nd
/v7Jkydwfk/m1rQFKs/g/G8Oq59k1D+H80uMjmwRO/wCzr+/7kj3RcVXcP7v
rCuzNatew/najuz/0na/gfPdFymmbxR/h9Aff8DFcxeCXy4br/Qw5j2cb+BT
FD9lDYJvb3Kt/dgvBB8ATuybxw==
"]], LineBox[CompressedData["
1:eJxTTMoPSmViYGBQAWIQ/fCpyJ45TB/sGcDgg33CB2EmeWYE/1rnn9lzWBF8
b+WnplIcCL5Z2LZMUV4EX6mzfa6AEIL/850mK7sMgn8h5EzOX1UEv05B0OaV
JYKv8yaU+7ovgr/gr1KX7xIEX5j/A8eRXwg+y/7Z65XnfITzs0123+T0/gTn
r/ZMWrDvG4L/9bWUwLNpn+H8rcHuzFNcvsD59R6t87c8Q/AV73rdWNz6Fc63
Mm+ZImn0Dc6PkTv/k/Eygv/1VO+jgsbvcP4MlriSIJUfCPff27qI6QiCz1rb
GGJZ+BPOZ1gZt/6R0C84v2jW+l6hQwj+Xu0ODsG833C+oFeRThPfHzj/ju6F
y5V7EPwN8+xVnsT9hfNj15sJyv5D8BtaFzbeWfUPzl/7QnY2n89/RHy2iHiw
L0Pwp8tzf/3/H8EHALD2ubg=
"]]}, {}}, {{}, {}, {}}}, {{},
{RGBColor[0.24720000000000014`, 0.24, 0.6],
PointBox[{{0.5, 0.5}, {0.6, 0.5}, {0.7, 0.5}, {0.8, 0.5}, {0.9, 0.5}, {
1., 1.}, {1.1, 1.}, {1.2000000000000002`, 1.}, {1.3, 1.}, {1.4, 1.}, {
1.5, 1.}}]}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{0, 1.5},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]}]], "Output",
CellChangeTimes->{{3.609067180188486*^9, 3.609067271004575*^9},
3.609072343015203*^9, 3.609086109509039*^9, 3.609086486791573*^9,
3.6090865636212873`*^9, 3.6090866565239487`*^9, {3.609086720658709*^9,
3.60908674452195*^9}, 3.609086878856998*^9, 3.609154345933103*^9, {
3.609170029563506*^9, 3.6091700560360622`*^9}}]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.609072524153113*^9, 3.609072524733124*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"\[Epsilon]", "=",
FractionBox["1",
RowBox[{"2",
RowBox[{"r0", "^", "2"}]}]]}], ";"}]], "Input",
CellChangeTimes->{{3.609067363646747*^9, 3.60906739966255*^9}, {
3.60906744588583*^9, 3.609067465075754*^9}, {3.609067515354051*^9,
3.609067519530452*^9}, {3.609072274202364*^9, 3.609072274598476*^9}, {
3.609072526380518*^9, 3.6090726698480577`*^9}, {3.609072731528295*^9,
3.6090729150879498`*^9}, {3.609073560577982*^9, 3.609073561893024*^9}}],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.609072993215026*^9, 3.609072997382264*^9}, {
3.609073426386114*^9, 3.609073434498846*^9}}],
Cell[BoxData[
RowBox[{"1.0", "/", "0.0025"}]], "Input",
CellChangeTimes->{{3.609086408969619*^9, 3.6090864195407963`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Sqrt", "[", "0.0025", "]"}], "/", "2"}]], "Input",
CellChangeTimes->{{3.609086437123238*^9, 3.609086448658773*^9}}],
Cell[BoxData["0.025`"], "Output",
CellChangeTimes->{{3.60908644307826*^9, 3.6090864490717*^9}}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"RBFPlot", "[", "r0_", "]"}], ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Interpolation", "[",
RowBox[{"data", ",",
RowBox[{"Method", "\[Rule]", "\"\<RBF\>\""}], ",",
RowBox[{"RadialBasisFunction", "\[Rule]",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "#"}], "/",
RowBox[{"(",
RowBox[{"2", " ",
RowBox[{"r0", "^", "2"}]}], ")"}]}], "]"}], ")"}], "&"}],
")"}]}]}], "]"}], "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0.5", ",", "1.5"}], "}"}]}], "]"}]}], ";"}]], "Input",\
CellChangeTimes->{3.6090869052801323`*^9}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{
RowBox[{"{",
RowBox[{"pieceplot", ",", "dataplot", ",",
RowBox[{"RBFPlot", "[", "0.1", "]"}]}], "}"}], ",", " ",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "1.5"}], "}"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.609072951623398*^9, 3.609072979474512*^9}, {
3.609073381191389*^9, 3.609073407483626*^9}, {3.609073438017385*^9,
3.609073526480563*^9}, {3.609074005831077*^9, 3.609074057301423*^9}, {
3.609074096166872*^9, 3.609074108371869*^9}, {3.609074331859788*^9,
3.609074381008977*^9}, {3.609085782008515*^9, 3.609085822473013*^9}, {
3.609086286822852*^9, 3.609086331652348*^9}, 3.609086474393572*^9, {
3.609086505615741*^9, 3.60908652166111*^9}, {3.6090865808259172`*^9,
3.609086637283023*^9}, {3.609086678576922*^9, 3.609086700468437*^9}, {
3.609086857354998*^9, 3.609086867014927*^9}, 3.609170046187407*^9, {
3.609170076678953*^9, 3.609170127054515*^9}, {3.609170176361415*^9,
3.609170176837975*^9}, {3.609170412301708*^9, 3.6091704126146193`*^9}}],
Cell[BoxData[
GraphicsBox[{{{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJxTTMoPSmViYGCQBWIQ7ZX64uKBl6l2DGDwwH6BqH9bl+QUexi/kWOzeqfk
Ejg/InLh+g8ft8D53P8bY9zl9sP5qoHvXhzuPgLnl5+ztJ/x5SScL75F8B4j
43k4f9sj5zPnbS7B+Yey5kpHvrkC539Vs+Vfm3sdzmf6uVpAWvUWnG/2P2Fb
8Lo7cP6ZFpNzx7Tuw/nyE17/XPnuAZz/+vv9e1cNHsH5S17tPsXX9xjO55Nd
/v7Jkydwfk/m1rQFKs/g/G8Oq59k1D+H80uMjmwRO/wCzr+/7kj3RcVXcP7v
rCuzNatew/najuz/0na/gfPdFymmbxR/h9Aff8DFcxeCXy4br/Qw5j2cb+BT
FD9lDYJvb3Kt/dgvBB8ATuybxw==
"]], LineBox[CompressedData["
1:eJxTTMoPSmViYGBQAWIQ/fCpyJ45TB/sGcDgg33CB2EmeWYE/1rnn9lzWBF8
b+WnplIcCL5Z2LZMUV4EX6mzfa6AEIL/850mK7sMgn8h5EzOX1UEv05B0OaV
JYKv8yaU+7ovgr/gr1KX7xIEX5j/A8eRXwg+y/7Z65XnfITzs0123+T0/gTn
r/ZMWrDvG4L/9bWUwLNpn+H8rcHuzFNcvsD59R6t87c8Q/AV73rdWNz6Fc63
Mm+ZImn0Dc6PkTv/k/Eygv/1VO+jgsbvcP4MlriSIJUfCPff27qI6QiCz1rb
GGJZ+BPOZ1gZt/6R0C84v2jW+l6hQwj+Xu0ODsG833C+oFeRThPfHzj/ju6F
y5V7EPwN8+xVnsT9hfNj15sJyv5D8BtaFzbeWfUPzl/7QnY2n89/RHy2iHiw
L0Pwp8tzf/3/H8EHALD2ubg=
"]]}, {}}, {{}, {}, {}}}, {{},
{RGBColor[0.24720000000000014`, 0.24, 0.6],
PointBox[{{0.5, 0.5}, {0.6, 0.5}, {0.7, 0.5}, {0.8, 0.5}, {0.9, 0.5}, {
1., 1.}, {1.1, 1.}, {1.2000000000000002`, 1.}, {1.3, 1.}, {1.4, 1.}, {
1.5, 1.}}]}, {}}, {{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwcmXk8lG8XxqUIqYQUWkRlX9pUkiNJ9kS2ZMlalEq2CiV7pYiEbNkqe6gs
EVKoCAlZxgyGYTBjxhgVes/v/cvna5557vs+5zrnPhc7HK+YunBycHBcXsXB
8d/Pi8Q5Pg4OIqyfjBT476fuypkjIZxEsAzUv9S0kggyu8cvcXMhe21RjFxN
hDGPX238fEQIFCjrYK0jgjO75rGoMBGu1PWbBW8lgsO6CLF9MkTIKErrsDhM
BM09dwzeyhGB83yDXJk6EbafuRFwWJEIlb5CtTyaRCAkeRBgLxF07jrfS9ch
gs0uk0xDfE5EZDjolhkRLNRF5VxNiBB9/YMS1YMIqvaCNhOmRGhXvqPR50mE
jXfXPLhkToQL5r4eDdeI0NW0NO11lggnOWo2BfkRwdRs+PVtZyJct+RIzLxL
BCP3/MNJ/kRY++vE2fSnRFCIznbfcosISrJVNduTicBfkvosPZAIUq9XqCSl
EOEL69FSDn4vcU8Q+D3H+AR715c+IIK/QB4nMY8I2olH9b5lEMHH8Od65/dE
OHxPOz4siwhC2UZhz2vxvQEGQxq5RPB9vdDZXUcEUQdrn9f5RGCeIPyW+USE
GWmf5wlvMT7c9o88WokwIhowdaqSCEENxkNu34nQuybkIC++99D3R+vPdRDh
Iy2m9VY9Ed4lFIso/MR9vSv47fCNCB0jzVT3AYzTqzJtMfxeSsk6990EItx9
VvXoB37PZ0Cx+9cQES7fbt6l00OEpM/Wd2RGiKB1cvS0/DDmv7vHxmUC1zlM
TRkdJYLTmroI4iQRFOUZ46njREgQCCg3myLC5vUcQQLTRDCbuC8uSSPCdLd4
HotNhJtqyV72c0QYbpZkFf0hAtfxTexkFu6/SlbzwhIROO79im+bJ0JD2sHu
Pk4SyItyy237TYSKGI0d8Vwk2CAfJ6OG3yu8e+KSEQ8JItbkGxv/xfO5mnHW
rSXB2S2vJezxPdFWZ41uCJBAreNql80ynk//fOJeIRKIW9l9MPmH51O6opSz
mQQHP5obSK0ggdb8vbP3pEjg6xtY7rEKf0+JzTm+mwSb3fqS5HBdhb5E+qIM
Ca751P0iIW+qzQ2/okQCdt+1gMOrSaiHwg6ZPSRYeXjzxC9kzszyLcP7SPDl
zdJHL9znVFhD6ZnDJDC6IPsrmpcEJL+WpbXqJCjbxN4qwEeC7ovtuk0aJOD5
Ijh2D/mbTU/cnWP4+1GW6jJyvRGBcFibBCUHlEXc15DgLZBlmTp4/gnHqDbk
gj1T3gV6JHgXop8gz0+C51LMDy6GJBjoKtcKRk7Y+Idv+yk8x2xY/HfkOqMc
ibzTJBDeab1JEOM2EWaieuAM7rd3Ts0YWbD2r0GdBQm2tlisCkVWn889b2BN
gptVD/zLkF2VTP26bXC/vuUpA8iPXJcenLcjQUbdX59/yBVpLzOnHEgQaZrB
u2UdCYa7zSr8nDA+32nn9iLzr//XyulKgsTqkz5ayAdO5o1EXyDBUb+NVobI
drfNf2/2wHX3dPOZIEe+41iffZkEhCGROCPk17T8ncpXScBS9Z7XRu6TtlSr
8iKBVFqymiryKgdOkxM+JCDv1nHZgayYWOjS7keCwLtaAdzIFu1Wt2xukuA+
2z2MjPu9w7MqdiwA2TIvvBb5lWZx7rXbJOCd+xMWi9zpf/b9YjCuG+caZYe8
WMLVGRFKAiE37qe7kHdNlIwLRpBAe4nzzRjG13jHuaXUKBIcOxQ/8RzZ33q1
kOwDEmw7tuKIJXJmbKlM+UMSLN3KKOZG/tpiqwGxmPdbPUYlmM9tauUXzRNQ
f29mJBiYf10v+9vERBKYR5Md/9PHtTy+Jx7PSMBn/JyyBblR7HxdcAYJ7M8f
7lNBfc2Y8nfzZ6G+GrPMSlF/m+6/oz7NwfeI0OSVkN3/rt1UlEeCIvKY8EbU
a9y+SoXDhSRwk3+67w43Cd57OGs1FpPgU4dyKxn1vn6g6nJfOQlGHtVHZ2B9
HBJ2DXF5h/k22fuRtZIEjoYbkuiV+Hn2zZgTyOXv3Rq5P5Cg9vo2gZ9YX2dT
hcX3tWCcRTN8yrEeQ39+UKn9SoJfFRZHhrBeC9d66Oi1kcCqw/3nqv/6QFD9
NfsfJIhuYOVoYn3n2nk23x8kQaj204Rb2Edmtzf7jM6SYIdFTwcX9pdkX/In
xzkSPP0T7z6OfUerlVOENE8CmWGeqEbsR/E3j74d/EuCSYtMv2vYrw79LJ3v
5hoGvgBOzqdk7KP3Uv1aRIfBqeGk1OZ+IkiTqppObhkGGw77f29+4T1ysHfT
523DsHH+CuVULxF2kAUrGqSGQdjt0yp/7K+NELlQrTgMPhYO9snYV9ewvG4U
HRuGF1+fhil/JEK5QUyLgvYwFJkuuT3Gvnwus1A0X2cYrhiQKLMfiFB0ilL5
wmAYIntaqLnYx03zbP9kmA8D0yD038Qb7G/2urfiLg6DiQbPp4EXRNj1ZWug
f+ww3Jzkj66MIsIoTXdcIX4Yjl1UO58YQYTMjd6nSQnD4DYYXewdRgSJ8192
6acMw+jAIdquYCKILfi2ib8YhpNE2UuX8J4T2N2+/cP7YeDtWL8c70qEP8F3
G7gow/CjJzm39BgRvh8eXx2nMQKS1Z1pB6aGoCHnrbrosRG4T3Mmdo0PQfmG
8Gvpx0fgTdyq5z4jQ5A8sbM/X3cE0tdnzFf3DYFrkmNRo+kIPCxvMLNrGYLF
hcEz864jUDGzr5L/xRDIVnQ9t340AiPXbEjZzkOwZWd291DsCLir2nqnOgzB
upjra1zjR4Ao81o2+dwQzLkJ+ngljcBni88GGWeGoG6Tie79rBHgl/qYQtIe
Agu/rzPv343A4b95r/R2D0GIasMRCeII2C4Xle6fJsCDa+n3BoZHoFCKf9ej
CQLEFwT8SiSPgOAzp4OzZALkSh7020DF73e5xX0jEKB5XUEp5/wIjF4cDhlu
J8C68Sey5DWj8PBIVmLqWwKISF73f75uFOrvq83dKiPAdluTJtsNo3AlOkfN
qYQAKj/4XLpFRkH8a1mXYR4BzD7czmjaMQr+ewsMH6YRIPHpxU15B0fhoFDZ
7r5IAjzv1HF1VRsFl17Zr6fCCZC3ducbyaOjYMvx1O97CAGqQwimz7RGIenl
e5npIAIQrpg9fGA0Ctl5/llZPgQYy1MZ1DUZheEiE02P6wSgkdcqcJmNwvkd
IQ5HrxGA41xzS6DVKFS1pTuvuEwAKd2jXFecRuHX180r+VwIoBAidkbedRQy
S7OPSzsRYH8tO3P8wihsaZHyOXWeADr7SzUdPEdBZmPkYJ0tAS5ISAecvjEK
hQ3UzbKWBLhms+rr2oBRGL374mC6OQFuJpBEvwSNgvLFq7kSZwhwnz/lnVbo
KLD1tNNPnCZA0YIAc9+jUTB4ob9N1JAAqqYOASOxo5CYOnGSrk+A2vxirrj4
UXCndeZ06hGgzc54MyNpFNLK/m2vPEkAi4rU589TRoF697JhjQ7GY8O03On0
UaCN3Wj9doIAM433j5Zkj4LQUVXqWm0C+G7r/2z/YhTEfPcnwHECLPvJmazP
G4WtVpdLA7QIEN5x41dtAcbX/JrOp2OYb/kWR8/iUZBVibcSRU4I3Ty1tXQU
xmunZvw1CbCN4ObTWj4K02/OrB8F1M/Bd8sB70ah1PPCh7PIyrHckQpVo2D+
OnzVoAYBKibNNwy8HwWO2+0j7sia2jnJ9z+gPgZlHFchN6fOSR1pGIX05/tD
Xx0lgAn7eOFk4yjYaJ41PovcaxKnmtw0CruT6htFkB3yhj/ofRkF9SYzKkGd
AJSVe/V+fxuFa7NVn0qRr9oGd778PgqPxB0tHyMvvG23seochdwF76xA5DsC
EuTVP0fBo3aowBuZx/2K57sezOdvY18/5JiPtWzXvlH46KTMGY68eeu6YJHB
UdhYWWiagZzha8v3eWgUWmLeXvyMLNNeEOczjPs9MK+7gFwiu7hlFxn1F9Q7
ewD3eyjEILdrHPWfH+lyG7luIFk5dHIURDVns7uQdVUnK/ZNj8J7YnXJAYxH
+6PDWiM01IvK6ahMZKuJyK+PGaNQV9qrJI7xJWr1ntFijUJv7qHn6ch0lq/b
8z+jYDT9Y/Ir5sf/1Ge6ydIoRHvG113H/HG82niTg4MM7yIPOkhjvgXOlT+w
5yJDfcM59mvUQ+KblSLrechw44U5NRL1IrHeLL2WjwxNd7ZleqCeVBpmX28V
IMNWF1XjM6i/CvFjR1oFyXBmavLoWV3Mp09MY8BGMoiqq5E9UK8mMso9/WJk
8H6TZFhqgPkLDnK4v5UMKt/+rhpHvTv0t06oSZBhg0eKi7Qx5uvhpcWkXWRI
P+Cw9qsJ5mu8OkxPhgyHhev0lUwxX8fWrP8tR4YV7T1bUs0wP3OvdlipkEHt
S8uFVAsCvD47riNyhAxJchZz0lifnn/6kp8eJYN1e9vHZjsCyCW3zWzWJMOY
4rWb1x0IkPnrTYL4CTIEfbcMHcN6f2wVOiZxigwC82mntdB6GS/4qWWeJsPl
+crMPdgv+BI9HkqdIUPVnd3ZclcIENJjqrrbmgwrI1sSD2O/8bbYES7vRIZD
6/idv9zCeM0L9xW4kOG09IQZN/arqSc8SkoXyDCt/rLE4A4BXH7SfqpcJoPY
wLn7jFCs5zO1u1T98HxnC8uLH6JeTG0+ad4nw9D2twWELALMzRqLNkST4Qf/
eEZBLuorVuvy8Rgy/EpqMw95RQDZDtmNOk/IYJe2ql2/mABiJgvOBulkCC60
SNesJsBfoyerLMrI0D6/v6e6C/uL3vfjHv1k2HVTIDhy7RDEVLS/liSQAfaI
SedsGAJH6c7tfUSMx5DTr5aNQ8DN9fOv7hgZaAe5uOW3DYFxXV/Z7lky6DeQ
J/SUh2BIdUxqmHsM6niOeY+aDgHHzqWV1nvHgA+2y3WnDcGxZblGnagxSPMj
FhXsQL9Y1r74/f4Y3Fl3g3/nTiIYX/A9YP1wDHpEFD48202Es531uR5xY/Ai
+8nUfXkieOVaRcWkjsGPes/hyweIkG0cbtz3egzyQoEtr0cEnnRS7+W+MXip
2mKueJUI685EbGAPjAFTb2llvBcRhHkV9e8MjUHgjK3mb2+cZ677Vz8eHQOu
v19lP9wggtrJ9WnvZsbA54SF3MEQInjQ1J1WrByHvuHCI1+fEKENEqfj5cch
xmk1eRv60DNCJQ4blMZBJpjdpVJNhF9jTT+iVcbhZ6PEK6jB+SSaXRl+YBwO
K15vMcP552+/Rbg/jANv58FbZ1qIIOO/cfs5s3HYV+GkX4DzVZGB4uNe83EY
I9k5h/cRYd/2E1zmVuPwgLkj/hz6V43P3lQj23HwXRzkXEK/eka46x24jcP0
Enc9P/rQ4JLHJlK3xqFE0GGNLfpN7tC8j+mB4xBuHlLDQL/5wLJBdcudcXiz
efvHEJwnE5dnt2wMG4fLTpD8FP1lkeHpCe5H48Dx20I1jIME+yUunguJHYd/
eRxaczjPVjLvfP8XNw76MyMn7HDebUwuebOQOA6xcev4pHB+7qOsvzuZOY6+
RcbUE+d5h/fSLNeccWB/M50uw3mf/AgujLzA+Ilvl5tD/0BXvWI8UDCO82eH
nTP61tVhbWJtb8dB6nxBPOdGEjywGovWrxyHgztct2wRQX+msMzRVD0OxkNW
c8qb0C/8UBz/UIfrC/Rf1hHF/e6ILnv9ZRzsT3HfUtxKgvaPpZrOreOw3aJR
TmEbCTxce1tF2sehzj6/TWo7+pF8Kcqtn+NAdV5oXJIggYaxno9S7zhQ0HgR
d+CcTvfkJPXh89WmK6slSSCgWrVFhzgO3MqWe2x2ov/sHXq1MDwOofsPnZTY
RYKTt7gO5pPHQekeeWEQOajO5LQAFfXBr8B9XJoEok6+hIZpfB+/m9EkcjlX
iocPfRyEKktX30OfTdUfD+tjjUNplGtRqSwJwqf5haIXxqGwLifiiBwJJGP2
ZsDfcTjhl134Hrlmr5UiY2kc0hL2bFKVRx/xM7Aqm4MCnx21q18gz/llnbRc
SYH274sxGxTQr4q1dPFyU8CwO+vRdWS5mpnz73kooNGUX9SK/NlemOa5hgKn
0kvI2xXR33CqBexYR4GL1v4K7shL2fa8XQIUqNZk3ixATjwZlhAuRIGxY+ot
Y8j7J/OkDotQ4M2RpPWiShj/B+0l1M0U+GN8S+c4sofy/NE0cQp8Vbzt6oLM
3Sn+1WQbBYTdL1+4jZzpfcxq5Q4KuH5UOxGLrLHJjfxGigKbvXnmk5F/VT7w
urCbAimBO71TkL3Plf4Tk6XAvjneyifIAv96HrTKU6Bb73xtOHLB8yXRO0oU
0E3kCPrv7xYntaVe7N1DgaeT1NlTyMNjuvvJ+yiQE2YuLIMcFOVZ/1SVAqtV
0obYeB4xhXhj/cMU2HTD3PgD8pu2yv7FIxRQ+nfYJgjZ5NrQhWINCux8c3jF
AeQpIa7588coMLHb68gIxjPirVyIsDYFnGpUuKKQJa1NBJp0KHB+BdN6N7J1
2jM5BUMKbCC5x538L1+a9e8IxpifwHVXv2J+Y0bGtGNP4/l0HzfpIH+W2Ws/
b4H7ndj3Swr14fjVcuqlNQVEW788CEP9LF0OvGFzjgKSXvuLCKiv/WXNcXXn
KcDYnKzstxvzYT4jcd2ZAgGNz++9RX16LAgV7XKjwOR8nN406jnzqH3zvUsU
6JIMpmpKYTybWYtn/CggV/sl/g7WC7Hkw5lfNyhQtlo4/wHWU3FSVIFtAOot
KOZwLNabscfWc67BFDgmt6k2RBx97LoT1X73KXC6qdd1HdbrOfY6ocVoCuS6
7QAC1rcCsdf9TgwF+nMzYnOFSfDt9SWxqCcU2NOj/0pCEH2+efyN5HQKzOhE
Nldh/+g7atexLZMCnb+eJxhjf3m1W0Y2K5sCo3z7qX3o/3UXqnvzX2H+T/1W
GcR+FP5s5GBNGeqX9MY/EvvZyuG980NNFEjkIrQHMIjQ+WXRyPkLBeyilbyS
6egfyz7nUL5RIH3PfEfJDPrpsLPmsx0U0BZ9T2xC/3xH5m455wAFLlw++j19
mAiLnh1eu+gUMHP8vXWxnQjfLJ99ecXA/d3aa/qyjQjPNF0klVgUiLDKfGH0
De8Xwd8dqn8oIBJS2RXSRIQbbyT26K6agCbxg5vS8b6Y/3uF5r55Auy41n5O
fEmEgbKT53eJT4A5r/On9Bwi1Hts/zG0dQL+rWuyTs/Eft7f9vaM1ASIGrv5
RqYQ0acqBmkoTcDKzX2LK2OIYHSTyi+oPQENPbXUAh+8Lxdc5SqvTEDYslfA
QXUi3CvRSLnuNQHFQr7jnoeIcOWCyDolnwkIeWb3J2M/7rf302zmzQmIKKy4
wFIgQvu7nZUPwibgXOCKV+e34n3mO3zS4dkE7K/x7Cv/MwSmLFuX1U0TwHnR
6/sv7yF49/XFhjctExAZuz3+6iX0t5mzNY7fJsD/S1IGJ/pdsnGYSG3HBOwk
HLUUNRsC/5cFTd4DEzCyfluFyJ4hSLf5Kzs8OwGdL2ulgqZwfqpPnHm/ZRL4
X32t9HYkwOnE4WT37ZNgVzn1/Zc1Ad56KpzcLDkJYe2Ro5ror+6I16Vfl56E
iZZK2kach4V8xk3k9k4CBOiPkbYSQE1GtezpyUnY8CYqb3/fIEQ8/OHn5TUJ
a49S5S9YDoJEfv3MrPckNH04Q1ttMggVTcUu1/wm4W6wE61YdxAmOR6YXQ2Y
hMP9OZdF1QbB+Lq2smf4JJxK8iRYbh0EEas3YxeTJyF0n1dEEXkAir2zbCdS
JuFKhVvKBGEAdGNjuy6kTwJjK4+gSu8A3PxyucEtexJ6wrMpQ18GgKC+O82l
aBK4k4Ua20sGIHfHU/PzDZOg1OG2W+r2AIBG2Ddi4yRUixb9kL8xAL1nrx93
aJoERU6RVcevDwBf/Kk99t8mwdnI8U2q2wB4cvOste2ehHtffjbxnh4AVap/
o9XkJCi8hb7x3QPwfbXbkd6pSRC8lj1G2zEAF3aal1rSJkGXrRvFu3UAkm33
ZFjMTcKuzfmmXkIDsPx94taZ5UkotQg8tH3FAHwuP7vPRJAKKbIF8+uJ/eCT
YdHItZEK45zynfP9/bDzgal59SYq6PnwEVg9/RDspO+3eysV8jneXTva3g8q
p3R4BrZT4dvSKc/wb/1AUNNKipWkgv43QiiluR/UBdWqF6Wp8Ee9fGyhvh+o
SwcMS+WooA4fsl/U9kPyxJ5BN0UqdOvqOF6t7oeFOtl/nXupMNxlWWvyph/K
rogef3WUCo9OJWwxy+sHR5uNXXaaVOC7e/VPz4t+EDi5wUX4OBVe0c4/8c/p
B89tvBG3dakwUpPcv/Z5P2zl49p8wIAK1yipDM70fvjG4ng1aUSFlVcU04RT
+0GudeGLuRkV/HO+hj9M6odfFXM2ayyocKJvRoH9tB8is+lTdVZUuLXm0+HA
hH5QjZkK9LWhwod7f4gST/qBfIuyTsGOCmXVRPPhuH6IdxtNJzlQoXPk0tf6
x/2gZUZUeepEhdS/qt4fYvthVmOg3tCVChLB/nf7Y/ohQ67XlPMiFZYM1siI
IJ8S6Rp550GFfscLCVce9cPyinbvy55UONeZuzz+sB8Kp79ySV2jwt2wm7G3
kc/9akrovU6F8u37bqsir/n0UfqhLxUO9lax+ZGrSj5UHL9BBSfLJ3IrkS+k
VOv9vkUFyycEHVHkTZHv+oqCqOBepXfrFPLn62UezsFUUF4hMZ+D7G1fvCga
ivlKBvIW3I+UQX7093Aq1MSK+ZYjd6q+2BYWRYXct29+XsL9B0tmFas9oMLb
kBcqOnhelXXpmvSHVHDg21SmifEY+p3ckRNLhZtDVZHnMF4PyQmONvEYT97e
gaT4fjja8Zgp8JQK2gzNvgWM79T7h6Gfk6jw3eJM/g3MR/LLexsDUqggp7F4
YwvmSy8+PHdPOhXsZwqukJJRP7fvHhx/ToXfo05vmlP6IdcjqDklG9/XkXu9
M60fVh33nVydR4Xdivd+G2WhvpS8btUUUCF48Of6OtSPo5gn//ViKqjwcKqb
v+yHulkXJUI5FT56LV6eKOyHK4PnP8S9owIr81EtpaQftrXYmuhVUSFM637V
mvJ+uJVh7lX+AZ+3/qRdU9UPdp2s1iMNVGgV79Bfh3rXXJUg+7GRCldrzgwG
YT1wX+gmdrRQwYrlLvIB6+WxsuUp2g/U423ZltperMfz7DzfbioUr+XavX6w
H6zinnIv91Kh3fDY8G0Srs/uqeEnUOHQp6d9DZP9kFdrpSBHoUIBLc6+Y7kf
oukLEa8nqZDeKXtKetUAXJVMGjk0TYWobW8t0nixn4T/Sj7JoEL8nqkVdOEB
aDA6y+uySIWuXsllKcUB6BuwGUsXmILKlk1NBKcBqFm3eExaaAoGF6sVTnkM
QIZmSmrRxikIpm5vJnkNgGv2wJkasSnIePCj5/LdAWB42H7s2zkF57VqPktm
YX/7a5ex8fAUVL2pruClDsC0wr+/KUemwP72E96suQFot0u33KkxBeviEw7Z
Lw9AQsPQun3Hp4DOGaavKTgIkvccAk2MpkDA69DPnCODoCbqePb++SmYD1uf
u+LJIOwTE2jXdZ4CSdfw2Obng6AgXnuC220KNlZFZlYUDcLWrWJ7gi9NwZqL
JorCLYPAsaNztZ8frj94LbLi3yA0yWi9cYyegga7j9KvvQlQJ0uXk4iZgq9K
n4R40O9XyKVlDD6egtXhQm8j4giQp/DnvlXiFHQlZExwlBHgoUqpo3HWFMS8
Fr75i0mAM4ckBdQqcb8j+y4KBw6B0eH2MHb1FHzW0D9AezgEOmpBf8trp2BP
UevT2YwhOKTeN6bcOAWWN4TqLn0aAnHNxzW7vk9BQEUcdQsPEYZPcnpsIE+B
/r5qq/sWeP9bDn+iCEzD1JEVR26i36P4cvomCU3DY9Om7Ic4fzkkSO7WF5kG
ULsnVI7znMlPx/B88Wmgbi/I24Pzs4rZiI7n7mmIcCy3ZtmQgGE82sQ8Mg1/
5udS71WRwFdnrGXZdRq83mVZHA0ZhsADk63CNdPAfXmD2zX1UXiSsfJ2me0M
yDml/FRH3ybVEVPWu4YG1/3b2d+KqCBmuFrIaR0NLmSOc4W9p4JAU6DXtAAN
ImKfOe7/QoXF9+57OEVocNuN96E/Ge+Bl9rF8hI0KPyl6BAnPgVRdxbygvbT
4KW3HvfvsCmgKTtk7rSlgUx8p1aN6TSM5XWvKLanAW0yYKW0/TQM7DI6f9iR
BlMmn2JCPaahWVxNwtiNBn1KGQViodOQuVo4ze8aDTZF2+0vKZ8G86GmpC9h
NOgp4Qj2EJqB6ofKsVeL8P1fohrDPs+Aisxm+ZkSGiwG/A7g7piB3HqOTx5l
NChyHur275+Bx3MdC64VNLh2oUt2L30GLpz1drBtoMHl2I/XWZtpILK7Ulm/
mwYp6hsjS3AfDz48b2nqpcGy94nC47gPTut7Tif6aTAevc2/6SYNpu/bPNUk
0tBfRjdlRNOgcXZpWXWSBvlaJ3sSS2ngVaPVJrVMgxrn6qa43zTwzt9YbsJB
h8Mx67I2rqCD0gJv8CP8ecqo3syaiw7ZsQyxtavocHvMxqd5LR1iGj8a8/DS
wcK9bM+JbXRwk3N9uyxIB71ly7Lyo3TYOJ8XRt1Nh5SJFdJmvnQ4K5drf0KG
DooTewf6b9Ahw+754XRZOvRb05LOBtJBoenptKkCHYSnnGXUQumgnRhqXrWH
Dlcjf3kEx9LBS81uV5Q6HVhE9oRyHh0qPK3/DeM6NlkP3m4upMNy5plf6kAH
+x5yCLuYDlFrDKLpx+ggmpKw8+kbXG/gIMvyJK6XXJphV0eHtqANn3ab0oHj
87NtAl24bhl/+h0zOphLildZd+N+x1ff6DtDh+FnV/ySeulAPrWs8NCSDvzT
Ri5/B+iwKEGNZ52jg+YPR189Mh20zMc8T9nRQf/37wjtcTpERpF0X9nT4crN
xr4DE/h+Rs/iOUf8vCLQ4u8UHeQ/Njo3utHhkXOMiuAcnpP9QWPbRTqsNPnU
9YFFh7fy1Zv93elw6MbGESc2vj/+9Tf5y3RgzGuYP/qD+3NJ2x/nRQchw0Nq
3hyzkJGUtG76Oh0WrD71/lwxC2Ot8RQdHzp86HwgpLRyFq6p3k/544f7Phly
o4FrFiJX+69yxLjnnKpvv8U3CxS7Tx+zg+hwF+qq7qyZBd23giHjt/F95sZ5
gfyzwONSuOLyXToMBgmW26+bhQvv/9QVh9Bh1C2sX3v9LDQL6d5hYN6kuzmk
JAVmIaJheNkvgg5BpumKnzbgfkRVaqsi6UC41LR8T3AWdK4FBi5F0eHcjxX8
ekKzwC2xefHuAzoYcH9iFwrPgqufS/WnaNTRn43kMxtn4XNb6U2eR3Tg2c+r
MIccHmj0Oxp1Mci6RBbfhO/vSq5of0yHRB8nt2xkHQWKn1A8HV7+WO24a/Ms
5IYcOGjxhA4hHJaDacjc/XfnExPocOCrM0lAFNfb2/6m/ykdLpfb+N5C/hy1
1WdbEh3E6wOyCci7Se77zyfj/g23e6uJzULYoQpm1jM6UPtLph8ijz7iKhtL
ocPPqXLRAWTtcVMv2TQ69LY0ckiKz0K2RsaeS+moU+tH+Q7IqxKm6UUZdKie
7ZVMRHaeViuZfU4HD6lbV5qRG7Ujr+zPooPfI+fkWeSdKT+V/LLpIFieWCC0
ZRZCmZIzlTl0aHmvXKyEPKp/tXAxlw61py3ytZC1M2suwUs6RLsa5Z1Czv7N
p3D3FeaTx/2NOfKq01bURqyj48obu88gO7/MyVtdQAfd8K8bjZAb/zEu6mNd
6cHWIA3knZaastFFdPAdLNwsixxSFE35jnUGK/fT+JGHufpfCL6mw0m4sWYS
96tlK+NmXkoH1V/WfnXImeU+uxPL6LA/rVE9BpmT/yO5rxz1UljlYo3s6CSQ
s/UtHd5pnVoUR26osnV2eEeHrWEv+HoxnpKC+VJZFXR4fupPcjTy3YsLw+RK
OkwsPXqnjjxcdyJTppoOIgcb3MmYL63Ncec93mOfqvhbG4HM2aRIpNfS4Vhl
iHcl5t9x2630fdgHAo79ndRFbvBptvOtx88rvip0on6CdzoN/v2I/cTl1tFO
kVkg3ipJ0fhEh/CZlZJ6yJo/lmyCP6O+0w4uVaIeOe4m9nG30GEo6dnHKNTv
naHWng1tdNi+0bNpGPXvsU0y+8p3rGv9KrIYsoWt79XWdjrscf5tYYj1It+/
jTfqBx2WahMvPcP66u6+osbxiw6rU4FjCuuzfmMjt10f6iPo7mk67ywUnNn8
o7qfDvNp6y/N8GA8Ous8/AgYP7Mrh3u5Z0GxbUPqzAiux+E65MQ5C5vXul40
xD7FQ83beQj7A6dh1YG8MTq0qkcWcmP/6G1xbHPBPhXOe6T58RIdQj+V/RuY
oUNndGjPhQU69L03d/z6mw6e5uL7xKbp8OnvKyXZv3S4Vn5XKJlKhxK15T/h
i3QoqjE6sHGSDmEVuXFa/+jQfLM5cAnXUSlnN1auwro9NkV5SqRDRH6S9Evs
G9I7ZK9y4rn3Jw9Ohe6ahedv3A12YL+2o7hbDOzGPL5oPLkXdROluvBhnwzq
mG2Tr4k6I3QKxg3LYR4aro+Zo04j1+ge1lSZhb1pgwQnrIuBgNKwv2r4fH2v
nTjWfah9xDYvE1zvYkekE/bJrp17TOxvzYJI6ZdbMUp02JwgkJ4eMAtf0nwi
nuA9ZLuaPj0UOAsPasjez+ToMDZRdN/hzizcPLFuWx7eawtFCk3nw2Zh5ecN
n37g/bf1sIyG86NZKJO8K3B+PR1cjbYrXMyahfs0PzODERrO08s3X2XPwtQj
TigbwjlDmdAykYN96UOn5vYBGvgLprq5v5yFQwtJzSt/0uB+j1iWRyHubwVf
HkcTDUrOi4h5vpsF1U3Rx3vyafDbZy3P9a+zcLE8z/ncDRo0tzGd2r7Nwq0E
4UUpXxokSvd9kG2bBVPLkusMLxoc/JXrR2zHPtby9mj2JRr4qGuOG3XPwsmk
Tc3nHGgwy3n9swxpFvwP55gq6tGgzsZaMnR4FhYeGOhd1KFBTDkEDY3Mwj/R
VbSC4zRQduVXTRibhaGSG9cNNHBOacnJWTk1C5Xc5uFj+2gw8ag3lDCP8dde
fTwV57AKSi3x8MIsbCfydFlto0HksRz1J79nYUm8/+WWLTSQZl6bM1icBeVp
ySM1m2jgYrHGuXIFA0ySu+sd19Ngf/HsB+GVDOA7HL33/FoarOLpFb+6igGs
5/fFL+CcmFWZ/WP3agb0W+hferSaBqQtGsfj+RlwnfrwiTYHxs9nZzptLQNc
LvdZRCzPwJ02vr/66xmwarXz287FGdh+p6d0hSAD2taO24X8ngHbkauSVzYx
YF+VVIkhcwYU1C2DvmxmAKns4oeu2RlYjD/at0uMAY6sh6EuOK890+F7PLCF
ARqOQoeeT8/Ar1dZK/QlGUB8svJyMGUGGnYNaD2UYkCz7olLTuMzUPBcOLRz
JwP0FKb5jMZwP0lh3DbSDDC255c+ODoD7htrT6bLMGBg9GL2wZEZMIudjxyR
ZcBmvT91MDwDu6Pc1lxSYICDXcVPV+IMCHBlGJYoMiAwNPhb2NAM/L7TGz2n
xADO6nL7AsIMfPPXEwjcw4CPyW0WAoMz8HYu+HT9XgbUXOWrMBqYgfSrVY+5
9jPg3tLZksc4j3pdkN/4UJUBsb6y9vv6ZuDcqJNF50E8n0j1hke/ZuCEQ8pT
kcMMGN4VZcbonYHNVmvF0o8w4G2/0a3vPTPA2XXCZkSdAceGxM/pIU+dCkqR
1sD4Ov+s/9I9Ax9O0raVaDLA6x+/wOjPGXj5Udph7hgDUmPkGbeQH4PD80PH
GbB3wddQHDmgOnE4QJsBcu/txRu6ZsD1YIdU/QkGcHuq2FxFNinjdeE6idy/
lmc38mFlrVw9XQYsqLO3jvyYAcn8m+PRegx45vE58QUyv3SZTKc+A3LWqXhf
R57PpF4UMWSAbvvHfB3koW07888aMUA7ZkptB3Jz8rmpNGN8/il9y0rkUpEn
iiOn8P3fZg2nOmcg5XGrp/RpBvBPTH8aQA5bx13iYYr5LKi924XseU9jttiM
AZnCYkE/kK24/fbOnWFAe9zj0l/IWneLrx+yYICrzlOxcWT55fHyAEsG7JH3
LvmLLHxTYr7OigFgY+q5CddfZlkd5DrLgJNah4zVkCnXYv31bBhQ0cOr74zc
Od1SGX2OATK9kTZPkN9f5PzbYcsA239nAlqRc8hq6iL2DCjXmsrhx3g9PH89
8KwDPs+f32GK7D+YX5t2Ht/n820hHdnRevTfsCMDzMLcheeQDX9uOSbtzADl
i0FbT2F+VE+b3/VwYUBhOZH/NfL21uiPxa4MiEnV6xfFfDMal08cusiAqpor
7H/IA5oHIwLcUW9VSwcCUR+f3l9prvNgQKTt/gMrUE+J5UR9PU/Uc9eo+VbU
210V0QfRVxhwxVDV7Q2yR8Hp1o6rDHi0j7j5DOpTI7vh1Nnr+H3z9CM5qF83
5f1Kid4M6PygxnMG9R1TlcPf7cOArCUzQV7U/0h7ZMtpfwaEF6fUhGF9RC4Z
H9cLZICiA29wM2kGXkfW7YgIYsC56h/6L7He+oT2cny6zYCVgkX8D7EeFeU2
1mjeRT1Wsc08yBhvi37VQxEYr9e6VI+JGfhLMtzoG8mALoHCqzcnZ2Dn5Vpm
WRQDRqX8Mh9SZ8Av5HmJ8gMGCE68HGnCfrGlxE1OOpYBzE2PGwIYqG/eua0i
zxjwr2vNwBj2p0fxLotmKQygH7K1NMD+VbG9py82lQG7h9b1lP+bgTWqVU/X
ZjCAZ3XX2wRO7HeOdzZw5TBAxaikKp6HBn+q+bnmihiQO8j1+spGGjzy3DXV
0cAAS2P7NUZ7aaBNSu2Ra2RAy4MHLi7okxfMRD6GfGLA/f6RwWBVGjgcXp18
oJkBvwktY5/VaKCyauJkUiv2A3Je+G28DzqTCrIcehlgcXeHVoo5DTZ+2mdD
m8b3KdFH1gTQ4Jm41hd+USYItH6zXGilgftr/mfGYkzY7L76o3M7DQ6d7PGI
EWeCReQxno5OGnR5XVorvI0Jg7ZWky97aLDuS4KJuBQT2pTDH58h0eCOP7Vb
VpEJCVfLah/N0cD5Z/yIzjEm3IjOFt2K/nSvh315pBYTuDvvyWivQ5+3Qi7s
y3EmHO/OMXfH+zlV4cNuYx0mjH5yZZRtoEN3yMRFcwMmGP4+9eiICM7BezXo
TuZMKB1er75pO/rTR+OLdy4ygdNp1OGXMs43/JV9g+5MeFGzOn1GBeeRqHsV
apeYcGhqehXnXjrEhip6z3kyYVrQSllqP85pN65T3byZcEtczdz4EPoy53+/
jG8z4Yr9969amjh/DLe/y7/DhN2xV+sPom/1ss98wnOXCeXHhEPktOiw8+yJ
0w2hTOjrTDbn1cZ559T95gP3mGCWUfsqH32tqdqmd1ueMCEk9dXPIGM65L+j
xN9IYIJs0iEN41N0WHWgyqv7KRMumu6TFjfBOVHZVikmmQnZpb8uFp6mw5Zd
WTkrM5gQY1Z1rAx9r0+md4jDcyYM3VpW9zRHv7xd53xNJhPsUkySdlvQ4Y7Y
xBa/HCaEdda6PkJfTF6vHD+Zx4SzBrxzmmfpoBHN4XWygAnkexEJY8iJfJ2n
sguZkHZ25+0oG/TBXD5r7EqYwG/+VKQJfXTRn6q7HW+YwGd0Ye0O9M2r/R84
KL1jwpkgx0clyA4sW437FUw4JbPu2FEH9L10jj/a1UzwPZ4qa3yeDv5knWsV
dUzwj33cZuSEvizMff9yPeYv3Ti7Ftlu90P28Y9M0H0VOq/gTIcTbj8Dv39i
gna3Ih+nC/qqCad7Y1+YUGis+DnaFfMbFWGk8I0JnnIClpPIC7L5Al6tTDhd
72utjb59yJ2RsPSdCY25tkV05IKpO1nCP5lw/Wl4gBz6+O3R2a5nu5lwLkc0
0Av5sWKzbEYPE0wLKsbfId/wXF8i34fx73ZbUEOfP7Vu3/Vr/UzYb38s9T/f
71BsofpugAnqOZWvypB16KnvtYaYkL6ulL3Dgw6VMfW3I4lMaCp2P2SOrLCH
rNVGYoIo576hMOSMDh5u4REmZA22UMuQhbwUWqxHMX8Tf22HkMMFTR6kk5ng
mpB1gOcSHf6UXj9FHmPCb7FXXkrIRGbVz6sTTHh6tGzLdWSzeELi20kmmMx+
i4pF/ryf89wilQn6KZ7nCpHVfu7arjXNhPk/jfGfkQt99IYjZpgw68G3bxBZ
QuRyTisN9ToRfnAWOf5tzAWhWSb8WhGTyXkZ821ZLm/NYEJ7R6T3BuSb7J6Z
NCYTav+SCrciTz/9+3p0DvWfIXpKGtnh0HYfuXkm6FlXWykhd/VqHbrKZsIu
BYeve5FP3nD9+2aBCRoRRS/2I1eJ3qv9+5sJlapnZ/YhK1UVBh/7ywTnczsz
VJCfn+3QjlhkQqdrf40csvDfudWtS0yw5rHRlUSOeLb5q+A/JrxWfKC5CfnP
EfWHVhxzEDrn/IIX2XPA/nTaijnIfU4J/I3nIwWECI9yzoHiU+lPY8hntr7o
kV01Bwb6ENSB3FzzJfkK1xwwD53Nq0Q+Yjdj+4Z7Dk4MFeunIxctb9jxd/Uc
tBaEOtxFlkw/MKrJi+v9lp12RH4C1i/C+ebg1Z+lWU1kHmKA+7c1c2D6zuPq
FuSAOxmKgmvnYHhx8iIL802TaKRbrpuDg2YcxK/IjvXjZanr56CYrt6VjqzH
qawmKzgHJb+Lj2oiL76+n3xBaA4u7v1Tuxa56DzlzwvhObjp2DrYi3oUrn9e
vXvTHLgaTP9xQ266uizuunkO3MifFuWRb0rYBOSIzkGZBGRNo96Jt4WP7twy
B/7EF+SLyHHK11Kdts6BWX5g2E5knaHWpcxtcxB3r65j4ALWk0ZE7Y4dc8AR
3uWng+y/9Bu278bzSD9UXcZ6lC+0yLCTnoPXB3t8cpEJ58o40mRwf+kHrxsi
a7+/VL9Ffg5Y0cTXsVjfAreGtMRU5mBPXEzoCqz/lwuNJzaq4f4jzn73x35i
83JH7pkjc3AhOGf3MvabdVZB3PHqc5AupuEWjOz97mCTIMzB+YqQkmA7Omj6
5ukKaM/BM8FXVRexf/UyHxmsMZ4DjyTD8D7sh/ezpvL1T81B3q8VTEDWMNPj
v2cyBx/3TgZmYf/MLuVs5TGbg68HPi86Y3+9es3HmNtqDqzvZXJ1mmI90M6e
XuE4B7fzYxMsjfA84bW1Nk5z0Ba3a1OsIR3ubpVUeOs8BxnFT181G9Bh2WCC
28NtDs4kConu1cf75qXf+65LqKdXIe9mdNC/OsZLv/Sbg395t6qE8L5p7G5d
Mo6eg3H9Jcr+PdjPazXzUipwvT2rtykI4Hn85xeHKudAUiyFKof3pcq+glNS
1bjem7TzsnifEl9sYr2qmYOpo6Rzu/gxHrEz8K4B9SVpJCfGg/etc8rPjm9z
kD91b4z9jwa3eRc4VpPmwLvoUGM0+t/uj4Vm+sOYXyHCz3uDNFAKcsqNHpmD
fY7jiZH9NCAw2gyEx+agvKDPLhzvf42BnIQd1DkwdLgg/uA7DZaLzBTUWfi+
J+qdLR9oEHSm2PIaLwsGS3WYVs9pcH7e4913PhY4J21KsU7H+SZRZpMSPwte
bunIPpdKA76B592T61hw82gEr3sSDZ44xZs7C7NAwHA0LCuWBgVeN8wst7Pg
WsGMQcpdnJeEVcveSLBAY24lqfkODbzeMgSFJVmwxasldSEI55c/Hp3tO1nQ
/0a99vwtGnwMtjutL8eCLB8a2cabBn0xx08dPcCCM61+tN+uNKjZy1H8TJUF
oydtfe1caJDR9X7dn4MsyLmlMvDZiQaum1Xb3qqxwCew/UrWf/48XcZIRZMF
TX0NxAdnacBTvNZAyoAFDO2cWdlTNKCafMkLNmQB7/VdBh1GNGhjhPMRjVhQ
8fLJ7kBDGsSrcnxJMWFB6NRM5DD6e4lahq6IBQvarwwvjWrT4GBrjw7veRbs
/bLs3n6EBmeDWo+fd8T4fVxmNOO8F6D8UbPSiQWPFkKsPx+mQUNskdpFVxac
Vv069P0gDQwtwpRaPFjwz/jxs204P3quviW/4zILZsQKhzX20SC24qrMDU8W
1EaIHnPGebNb7Jyk7DUWCK+9YFergvPl0F6RKF8WOC68bCtRpMHdGBkhkh8L
NLd0hv5RoEHOsW0Ch2+w4KFXZqge8mQWL9/ELRbQSi/4s+VosNb8H/exQBZ0
15b6WSCrcLNWJgWxIOSfQU+VLA18LhCXdINZ8Hb9+Lc4GRokinb/ybjLggC1
85d5kKu+fGUvhGC+BMVD7krTgEPx3ezLcBbca18jGbGbBpKEghmOSBbcudRf
vgH5xKNMqlUUCxrGxduf76LBvdloMs8DFijtmnjduRP1kxky7BDNAu7T8sHX
kb+b3RiqeIjvW9CdFEVmrLoyIBDDgm+TZ2Y/SdFA+K3zrwuxLEhZdSLZD1nV
7Wx33WMWPBVhUJSQrTeb/Ngcz4K0r5tIVEnMR8uJ9qtPWND26Ex4EXLazSOt
zQks6POTHfBFrpPf80UikQVkmT9kbeSRgd1N/kks+FzH/2IzMvfDLY3tySyo
r42SZOyggQwI1suksKB66pZNB7IBfXXtnVTUh277mbfIns+XqnrTWHCVZr7h
OXKMKfOdSga+n6s2Lha5bOVEeeRzFpjlPCNEIHeXE14TM1mw87PTXAjygktX
0aFsFszLX+4JQxbf9CU/JocFc6fpUdHIGs0fXlJyWZBruXrdM2SHG29yNF+y
QH2m0KUIOUQuPzPxFQt0deofNyHn9mek0/NYsLD0L2EMuflBQopuAep9PZ/3
Gjzf5NEHSRmFuJ96B3lV5LW04ISFIhYkxLnWuiKrZPjFmZSwwGivvVIqsunp
yzEvX7Og1/lKwC9kb06naI4yFkj8S3kljvF/WmZ1z6qcBWt/tL11Qh7YqB3K
844FYRvAmwvzuXnyvqteBerpvQ7dCtm89ofuvUoWjH3acf81cpur01r+93i+
vwe3eaFe1hzJpxnW4HlIeSJ9yLrrmR3RtSxQi3RQOon6qn93N2F9PQsUuZar
VFCPy/e/+Js0sGCbur1yIbKag6BN7EcW8Eyw6pVQv+U8mduFPuPn5cVwDPWe
a13/UuQrnu/rg6gsecy/Iu99y28scEr2H9DF+pHgPH05sZUF61icJ5nISXnE
PWLtqO8XQ7aWSjR48Pdf1dafLBDMol48twfj+/1kql031uu73NNyWL9c2Y9u
p/dgPf911V5CDjLcrr2jD/UQQtQqxfq/lqrRunOIBSfmO12sDtGg6Fp4sQsR
+2XLrQvG2D8mT7TF5pKw36RGOelhf3GesbWQGWVBnkjVQWN1GlhA4JD8BNbD
Gi+uOE0aqJOqZ/cysf4Nr53i1qeB/5uVXdfnWKCVHGWtb0CDN1EGb8tZGN/m
yp1x2O+U9vbfVF3A+nTQnd6L/XFHyJ+VaksssPI99CXvDOp/12GRY6vnYdV+
/yA/7K9txAiuVJ55UL7gIy3tiPdBSvfcAu88XJpr4x3AfrxT2PtHCf889Cof
tDV3o4HWyuIYCcF5uJd/xD3ME+830s41HFvn4a7C1/Vdgaj3VAGOD3vnoejj
87dTeP/UWdvTxPbPg77w/NLeTBpEbCwi+B6YhwgnCavAbBqIRBvUKB2ah/If
xzZve0WDAwHhN9OOzoNV183Ih//9v/bs4lyg7jykTa7slPiM/V6EMqFuNw90
Eas3pTQafGNF1gbbzwOFd8/3AwyMd5ds3GeHeTD8Eb2hGv2x12MPdROneViS
eE38+hv3t5b20OnCPLwVcizk5KQDN9f8vnte87DQRbjnive5BHNlUE/4PLw4
ahuQv4MO5t+3C3oVzwPh91rFYpw/fGt+h5SUzEPrha6avzifJOb/YM28nocN
k6ZvTqLf7IuI+OVRPg8/MpeqB9FfOmjSMlwq58Gledx+Bc5D7q9rla0/zoOm
h/hbCfRvd+JsjTR7cD2XtFcPvOmQGXzwQ1DvPNRSY/krfOjw8cqGPTW/5mGb
0Nppki/u1/CTsNrAPGztnuPZcwPnrVWKA/tI83CzpmugOpAOCT6L7tLUeXji
auITGI7zpOWzyHX/5oEsoXApIIEOVooBqy9wsOGhhd3WwKfoj1fahtevYAOf
zwvazUQ62BZtC/VexYZvDjMdl5NxHuTKvN3Hywbhuj/hymnoJ/ruLu9bwway
yW21zel0cC1xCozmZ8M+xZONS8gfbHbd0lzPhoMvfA58eI7zXelL31xhfL8V
+55YDvrtyCjWv41sKG6TnqYgN9u6e1tvYoPq+cL+slw67OBV8OIXY4PEA6HD
//0fr9O++LLXdja4exFZcvl0CDoQM/VVgg1RBUrVA8jya6557JJkg1g7f+O9
AjqEvt17sXcnG+omAgL6C+lwYO1bZw05Nsh0P4k2LqHD8HDCyFN5NmwbzfEm
IT+s8HOcVWADv/uU5dXXOC86HXbIVmbDa89JWnAp+tfDYkNLKng+mmjcqjI6
wPq/tpZ72cCjcHV9CHJi1XsbvgNsmDz//er1cpxXY1L7nFTZECp2T5uMTHcJ
sq45yIYnxt/bTN+g39igaXlVjQ1qxSWjEm9xXh2T6G45woZUa3X7YOTM9yvM
pY6ywbRqj+cg8h+3j6bdwAYfocfSke/okHs0u0P5GBtqjyjVdyObCoWZRGmx
wbsioVWiAudhisv34eNsUMi6oe2KnF+rY6x+gg2B49FbXyBbxUu3PtHB/J6P
MxlBXuXOY0g7yQbWkulPsUo6lMDEF109NhB+pmUZIZ/b+EUvUx/5lGnZrcr/
/x+t+a8BG9YdNV3MRi6vu3/S3AjXZz/wbUF2SLj0ucgY9XLnj+gE8tpLRid4
TNjwIyWFsLIK9XNMqfH8aTb2x6D3osium9YfrzbF8x54ly+HLDhNqxc+w4Yq
CZdsVeTahnZNT3M2XK0qTTuKHFq9MqfEgg25F/KTANmgXJWXackGhtkVpf8+
Fyy8ePmANepTo9Liv+/35qR0+J3F83Ea8ssjp6V9P1Blw4bGbIauOLLzU87k
xXO4/oU73KuR5WIOLGvYsWEzuV1jBvc/G3nBMdieDX9Fm6ntyBXBzz5/dGCD
RrDp6mLkoJttctyObNDa6XI/Eln7+opHuk5s2Fu8dM0Wme/SfuY9ZzZkhEq+
UURud3azbHVhw1z7sPFvjP9T2+Tq9W5s+J5qcbgOeecpjtD4i7h+DpkCyJMn
91G63dkQP2ubuYD5fq3paih6iQ15PNpPCpA19n4TTvNkw1ibvwA38ir5f/7E
K2zw8vKMzkf9fJHaOyh5jQ2XZrYrGiJbbkzMeXEd8592qTYI9bht3VfeSW82
JP/5ky2APMq9fFnBlw0Nz+UTU1G/VxecVF/74/Ohnx6+RL3f61duqgpkg+QV
bem7WC8mXY7yS0FsuNzEO0jFetrU+uQR3GGD3WVRHxPk7Nq/lo132eAcVniQ
r5gONc+bKK0RWL8j/Dfhv3pN/mMoEIX1n6v55jbWs36c4mvTe2zQ617Mq8qj
Q3do3I2eB2ygaP8ulXiF9eRmz0eKZcPgo67XBdg/3jo89pSKY8P+s51HG7LR
/1t/6nSJx/Utjew7s+jAayD/bDIB620f3+lh7EeSSmz5uWdsEDhp4FuXiv19
7qHR6lw2XNl6Ucorng4NbVoqV16gfhRWivPGof97NS/Y8/K/+L7hSIqlA7+d
XW9uPhsqcmeDsx6in2xSdNJ5zYaSGy3tjpF02JtJOlFUivmTyCusw/6bEfBE
RqScDQ9Uik9vCqPDrT1L0+S3bNjqsWWwKBiff/bNP+w9G+78iIoIv4nP+9yx
ma5hQ5Aov1SeP/Zfk/0a5h/YsLSc7vQZ+//kqpSVuxpQDzOXGyledHju6fGw
sYkNKnK7U7rc0e9r8WWv/MEGx9BVWSesUZ9basM9utjQe/nf2Cz676n5axd/
/MR8ewk8SziD/Tf/l1JWLxtsKLx6LXh/3d74qlKLwIZVfNz+P07QYYZy8nvw
BBu6rZq0b6hgP/j49/XEJBuG244H5iuivlKL409PsYE0X8PVLYf9yXTT2R00
NswmPFwhvAvvk/djo3VzbCiMjArbJ4rPJyQ3ycyzYXq7zjYZETocumacF8Nm
Q9E51rKwEB2Ed/8vTgCx/7ZvYPr3PzUiv5XXDPA/ggBqUsj79z/jP9lKrQnw
P/DaHTUw/fc/yzDlRXsG8D9etdEXmP73P7aumIZBA/A/zI+F+v//9z+nCL8M
AADwP8kcjio=
"]]}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{0, 1.5},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]}]], "Output",
CellChangeTimes->{{3.609072988843494*^9, 3.609073000976534*^9}, {
3.609073384518071*^9, 3.609073527501336*^9}, 3.609074059171039*^9, {
3.609074099874051*^9, 3.609074109601766*^9}, {3.6090743339806137`*^9,
3.609074383004599*^9}, {3.60908577541682*^9, 3.6090858228447104`*^9},
3.609085863068437*^9, 3.60908611631842*^9, {3.609086288946081*^9,
3.609086332157178*^9}, 3.609086475596017*^9, 3.6090865582345133`*^9, {
3.609086601815268*^9, 3.609086625057007*^9}, 3.609086656357728*^9, {
3.609086702717181*^9, 3.609086766443688*^9}, {3.609086852611527*^9,
3.6090868862976093`*^9}, {3.609170040171229*^9, 3.609170128481189*^9},
3.609170179272334*^9, 3.609170415781273*^9}]
}, Open ]]
},
WindowSize->{740, 599},
WindowMargins->{{Automatic, -10}, {5, Automatic}},
FrontEndVersion->"9.0 for Linux x86 (64-bit) (February 7, 2013)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[579, 22, 156, 3, 32, "Input"],
Cell[738, 27, 419, 9, 81, "Message"],
Cell[1160, 38, 714, 13, 61, "Message"]
}, Open ]],
Cell[1889, 54, 143, 2, 32, "Input"],
Cell[CellGroupData[{
Cell[2057, 60, 1863, 51, 143, "Input"],
Cell[3923, 113, 1838, 38, 242, "Output"]
}, Open ]],
Cell[5776, 154, 92, 1, 32, "Input"],
Cell[5871, 157, 501, 10, 56, "Input"],
Cell[6375, 169, 141, 2, 32, "Input"],
Cell[6519, 173, 124, 2, 32, "Input"],
Cell[CellGroupData[{
Cell[6668, 179, 151, 3, 32, "Input"],
Cell[6822, 184, 96, 1, 32, "Output"]
}, Open ]],
Cell[6933, 188, 806, 24, 99, "Input"],
Cell[CellGroupData[{
Cell[7764, 216, 1186, 22, 55, "Input"],
Cell[8953, 240, 24862, 416, 275, "Output"]
}, Open ]]
}
]
*)
(* End of internal cache information *)