-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
54 lines (45 loc) · 1.86 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
def hamming_accuracy(y_pred, y_true):
acc_list = []
for i in range(y_true.shape[0]):
tmp_a = np.sum(y_pred[i] == y_true[i]) / float(len(y_pred[i]))
acc_list.append(tmp_a)
return np.mean(acc_list)
def accuracy(logits, labels):
"""
Return accuracy of the array of logits (or label predictions) wrt the labels
:param logits: this can either be logits, probabilities, or a single label
:param labels: the correct labels to match against
:return: the accuracy as a float
"""
assert len(logits) == len(labels)
if len(np.shape(logits)) > 1:
# Predicted labels are the argmax over axis 1
predicted_labels = np.argmax(logits, axis=1)
else:
# Input was already labels
assert len(np.shape(logits)) == 1
predicted_labels = logits
# Check against correct labels to compute correct guesses
correct = np.sum(predicted_labels == labels)
# Divide by number of labels to obtain accuracy
accuracy = float(correct) / len(labels)
# Return float value
return accuracy