- Change FOI
- Past vaccination campaings ?ß
- Lanch big calibration
- Tipping point for vaccination
- Difference rainfall scenerio
run.sh
: run the calibration for a departement and a run level.generate.sh
: run the calibration or just some generation (like pomp object, parameter file) for all departements at a run level.
pomp_cholera_juba.R
: build the POMP object containing data and code for simulationrun_mif_cholera.R
: fit the models using multiple iterated filteringanalysis_haitiOCV.R
: plot some information about calibration.forecast_haitiOCV.R
: code to project the model. Take fileshaiti-data/proj/rainfall.csv
for rainfall and filecovar_mob.csv
for the mobility covariate.trials.R
: A little scratchpad ! (now to plot also diagnosis)
forecast.ipynb
: Code to forecast and project vaccination scenariosrainfall.ipynb
: Create a rainfall projection file, and run some checks if we add new data.data_analysis.ipynb
: Data analysis on the initial data.
sirb_model_vacc.c
: The pomp model containing the transitions, able to support two vaccination campaign.v_eff.c
: Function for the two doses vaccine efficacity
In the fromAzman folder:
cases_corrected.csv
: Cases corrected with some NAs on big dropsrainfall.csv
: remote sensing estimate of daily rainfall (TRMM data) In the proj folder:rainfall.csv
: used for projection. At root level:input_parameters.yaml
: fixed parameters for the SIRB model in YAML format
install.packages(c("tictoc", "pomp", "tidyverse", "magrittr", "ggthemes", "GGally", "foreach", "itertools", "lubridate", "dplyr", "purrr", "readr", "stringr", "tibble", "doMC","doSNOW","truncnorm", "zoo") , dependencies=TRUE)
options(show.error.locations=TRUE)
options(error=recover)