-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy patheval.py
26 lines (20 loc) · 882 Bytes
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import gym
import numpy as np
import jsbsim
import gym_jsbsim
from stable_baselines.ddpg.policies import MlpPolicy
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines.ddpg.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise, AdaptiveParamNoiseSpec
from stable_baselines import DDPG
env = gym.make('JSBSim-TurnHeadingControlTask-Cessna172P-Shaping.STANDARD-FG-v0')
env = DummyVecEnv([lambda: env])
# the noise objects for DDPG
n_actions = env.action_space.shape[-1]
param_noise = None
action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=float(0.5) * np.ones(n_actions))
model = DDPG.load("model/ddpg_fg_turnheading", env=env, tensorboard_log="model/tensorboard/")
obs = env.reset()
while True:
action, _states = model.predict(obs)
obs, rewards, dones, info = env.step(action)
env.render(mode='flightgear')