-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathLunarLander_NAF.py
50 lines (41 loc) · 2.15 KB
/
LunarLander_NAF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from rl_coach.agents.naf_agent import NAFAgentParameters
from rl_coach.architectures.tensorflow_components.layers import Dense
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, GradientClippingMethod
from rl_coach.environments.environment import SingleLevelSelection
from rl_coach.environments.gym_environment import GymVectorEnvironment
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(20)
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
schedule_params.heatup_steps = EnvironmentSteps(1000)
#########
# Agent #
#########
agent_params = NAFAgentParameters()
agent_params.network_wrappers['main'].input_embedders_parameters['observation'].scheme = [Dense(200)]
agent_params.network_wrappers['main'].middleware_parameters.scheme = [Dense(200)]
agent_params.network_wrappers['main'].clip_gradients = 1000
agent_params.network_wrappers['main'].gradients_clipping_method = GradientClippingMethod.ClipByValue
###############
# Environment #
###############
env_params = GymVectorEnvironment(level='LunarLanderContinuous-v2')
# this preset is currently broken - no test
########
# Test #
########
preset_validation_params = PresetValidationParameters()
# preset_validation_params.test = True
# preset_validation_params.min_reward_threshold = 200
# preset_validation_params.max_episodes_to_achieve_reward = 600
# preset_validation_params.reward_test_level = 'inverted_pendulum'
preset_validation_params.trace_test_levels = ['inverted_pendulum', 'hopper']
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=VisualizationParameters(),
preset_validation_params=preset_validation_params)