-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeep_dream_example.py
148 lines (115 loc) · 4.15 KB
/
deep_dream_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
os.environ['CUDA_VISIBLE_DEVICES']='-1'
from keras.applications import inception_v3
import tensorflow as tf
from keras import backend as K
""" num_cores = 4
CPU=True
GPU=False
if GPU:
num_GPU = 1
num_CPU = 1
if CPU:
num_CPU = 1
num_GPU = 0
config = tf.ConfigProto(intra_op_parallelism_threads=num_cores,\
inter_op_parallelism_threads=num_cores, allow_soft_placement=True,\
device_count = {'CPU' : num_CPU, 'GPU' : num_GPU})
session = tf.Session(config=config)
K.set_session(session) """
K.set_learning_phase(0)
model=inception_v3.InceptionV3(weights='imagenet',include_top=False)
layer_contributions={'mixed2':0.2,'mixed3':3.,'mixed4':2.,'mixed5':1.5,}
layer_dict=dict([(layer.name,layer) for layer in model.layers])
loss=K.variable(0.)
for layer_name in layer_contributions:
coeff=layer_contributions[layer_name]
activation=layer_dict[layer_name].output
scaling=K.prod(K.cast(K.shape(activation),'float32'))
loss+=coeff*K.sum(K.square(activation[:,2:-2,2:-2,:]))/scaling
dream=model.input
grads=K.gradients(loss,dream)[0]
grads/=K.maximum(K.mean(K.abs(grads)),1e-7)
outputs=[loss,grads]
fetch_loss_and_grads=K.function([dream],outputs)
def eval_loss_and_grads(x):
outs=fetch_loss_and_grads([x])
loss_value=outs[0]
grad_values=outs[1]
return loss_value, grad_values
def gradient_ascent(x,iterations,step,max_loss=None):
for i in range(iterations):
loss_value,grad_values=eval_loss_and_grads(x)
if max_loss is not None and loss_value > max_loss:
break
print('...Loss value at ',i,':',loss_value)
x+=step*grad_values
return x
import numpy as np
import scipy
from keras.preprocessing import image
def resize_img(img, size):
img = np.copy(img)
factors = (1,
float(size[0]) / img.shape[1],
float(size[1]) / img.shape[2],
1)
return scipy.ndimage.zoom(img, factors, order=1)
def save_img(img, fname):
pil_img = deprocess_image(np.copy(img))
scipy.misc.imsave(fname, pil_img)
def preprocess_image(image_path):
# Util function to open, resize and format pictures
# into appropriate tensors.
img = image.load_img(image_path)
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = inception_v3.preprocess_input(img)
return img
def deprocess_image(x):
# Util function to convert a tensor into a valid image.
if K.image_data_format() == 'channels_first':
x = x.reshape((3, x.shape[2], x.shape[3]))
x = x.transpose((1, 2, 0))
else:
x = x.reshape((x.shape[1], x.shape[2], 3))
x /= 2.
x += 0.5
x *= 255.
x = np.clip(x, 0, 255).astype('uint8')
return x
step=0.01
num_octave=3
octave_scale=1.4
iterations=20
max_loss=10.
# Fill this to the path to the image you want to use
base_image_path = '/Users/jayde/Downloads/20180911_133246.jpg'
# Load the image into a Numpy array
img = preprocess_image(base_image_path)
# We prepare a list of shape tuples
# defining the different scales at which we will run gradient ascent
original_shape = img.shape[1:3]
successive_shapes = [original_shape]
for i in range(1, num_octave):
shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape])
successive_shapes.append(shape)
# Reverse list of shapes, so that they are in increasing order
successive_shapes = successive_shapes[::-1]
# Resize the Numpy array of the image to our smallest scale
original_img = np.copy(img)
shrunk_original_img = resize_img(img, successive_shapes[0])
for shape in successive_shapes:
print('Processing image shape', shape)
img = resize_img(img, shape)
img = gradient_ascent(img,
iterations=iterations,
step=step,
max_loss=max_loss)
upscaled_shrunk_original_img = resize_img(shrunk_original_img, shape)
same_size_original = resize_img(original_img, shape)
lost_detail = same_size_original - upscaled_shrunk_original_img
img += lost_detail
shrunk_original_img = resize_img(original_img, shape)
save_img(img, fname='dream_at_scale_' + str(shape) + '.png')
save_img(img, fname='final_dream.png')