-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodule_eight_core.R
187 lines (168 loc) · 4.8 KB
/
module_eight_core.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# ================ CORE FUNCTIONS FOR MODULE EIGHT =================
## =========================== My sign Test ======================================
# #flag=0 '=' case
# #flag=1 '<' case
# #flag=2 '>' case
my_sign_test<-function(data , mean , alpha , flag ) {
x<-0
discard<-0
n<-length(data) # total values
for ( i in 1:n ) {
if( data[i] > mean ) {
x<-x+1 #count values > than mean
}
if( data[i] == mean ) {
discard<-discard + 1 #count values = to mean
}
}
n<- n - discard #total values after discarding
if( n < 30 ) { # if n < 30 use binomial distribution
temp<-my_binomial( x , n , 0.5) #using binomial function
if(flag==1) {
temp<-1-temp
}
if ( flag==0 ) {
temp<-2*temp
}
return(temp)
}
else { # if n>=30 , use normal distribution
pSD<-sqrt(n*0.25)
z<-(x-n*0.5)/pSD
pvalue<-pnorm(z)
if ( z > 0 ) {
pvalue<-1-pvalue
}
if ( flag==0 ) {
pvalue<-2*pvalue
}
return(pvalue)
}
}
## =========================== My signed rank Test ======================================
#flag=0 '=' case
#flag=1 '<' case
#flag=2 '>' case
my_signed_rank_test<-function(data , mean , alpha,flag ) {
# test case
# data<-c(97.5,95.2,97.3,96.0,96.8,100.3,97.4,95.3,93.2,99.1,96.1,97.6,98.2,98.5,94.9)
# my_signed_rank(data,98.5,0.05,0)
sortDif<-sort(abs(data-mean))
n<-length(data)
negcount<-0 #Negative Rank
poscount<-0 #Positive Rank
discard<-0 #number of elements which are discarded
count1<-0 #for discarded element it must be subtracted from the total value for Negative Rank
count2<-0 #for discarded element it must be subtracted from the total value for positive Rank
for(i in 1:n) {
if(data[i]==mean){
discard<-discard+1 #calculating discarded element
}
}
for(i in 1:n) {
for( j in (1+discard):n) {
if(sortDif[j]!=0) {
if(abs(data[i]-mean)==sortDif[j] && (data[i]-mean)<0 ) {
negcount<-negcount+j #calculating negative rank
count1<-count1+1
break
}
else if(abs(data[i]-mean)==sortDif[j] && (data[i]-mean)>0 ) {
poscount<-poscount+j #calculating positive rank
count2<-count2+1
break
}
}
}
}
negcount<-negcount-count1*discard
poscount<-poscount-count2*discard
calculated<-0
if(flag==0) {
qvalue<-qsignrank(alpha,n-discard-1) #two Tail
calculated<-min(negcount,poscount)
}
else if(flag==1) {
qvalue<-qsignrank(2*alpha,n-discard-1) #left tail
calculated<-poscount
}
else if(flag==2) {
qvalue<-qsignrank(2*alpha,n-discard-1) #right tail
calculated<-negcount
}
return(c(calculated,qvalue))
}
## =========================== Mann whitney Test ======================================
my_mann_whitney_test<-function(data1,data2,alpha,flag) {
# Test case
# data1<-c(14.9,11.3,13.2,16.6,17.0,14.1,15.4,13.0,16.8)
# data2<-c(15.2,19.8,14.7,18.3,16.2,21.2,18.9,12.2,15.3,19.4)
# mann_whitney(data1,data2,0.05,1)
#
temp<-c(data1,data2)
temp<-sort(temp) #sort temp
n1<-length(data1) #length of 1st data
n2<-length(data2) #length of 2nd data
n<-n1+n2 #total data
w1<-0
w2<-0
for(i in 1:n) {
for(j in 1:n) {
if(temp[i] == data1[j] && j<=n1) {
w1<-w1+i #calculating w1
}
if(temp[i]==data2[j] && j<=n2) {
w2<-w2+i #calculating w2
}
}
}
calculated<-0
u1<-w1-(n1*(n1+1)/2) #calculating u1
u2<-w2-(n2*(n2+1)/2) #calculating u2
if(flag==0) {
qvalue<-qwilcox(alpha,n1-1,n2-1) #two Tail
calculated<-min(u1,u2)
}
else if(flag==1) {
qvalue<-qwilcox(2*alpha,n1-1,n2-1) #left tail
calculated<-u1
}
else if(flag==2) {
qvalue<-qwilcox(2*alpha,n1-1,n2-1) #right tail
calculated<-u2
}
return(c(calculated,qvalue))
}
## =========================== Krushkal Wallis Test ======================================
my_kruskal_wallis<-function(data1,data2,data3,alpha) {
# test case
# data1<-c(94,88,91,74,87,97)
# data2<-c(85,82,79,84,61,72,80)
# data3<-c(89,67,72,76,69)
# alpha<-0.05
temp<-c(data1,data2,data3)
temp<-sort(temp) #sort temp
n1<-length(data1) #length of 1st data
n2<-length(data2) #length of 2nd data
n3<-length(data3) #length of 2nd data
n<-n1+n2+n2 #total data
R1<-0
R2<-0
R3<-0
for(i in 1:n) {
for(j in 1:n) {
if(temp[i]==data1[j] && j<=n1 && i<=(n1+n2+n3)) {
R1<-R1+i #calculating R1
}
if(temp[i]==data2[j] && j<=n2 && i<=(n1+n2+n3)) {
R2<-R2+i #calculating R2
}
if(temp[i]==data3[j] && j<=n3 && i<=(n1+n2+n3)) {
R3<-R3+i #calculating R3
}
}
}
H<-(12/(n*(n+1)))*( (R1**2)/n1 + (R2**2)/n2 + (R3**2)/n3 ) - 3*(n+1) #calculating H value
qvalue<-qchisq(1-alpha,2) #calculating qvalue
return(c(qvalue,H))
}