-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfield-solver-wasm.c
366 lines (300 loc) · 9.21 KB
/
field-solver-wasm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <tgmath.h>
#include <time.h>
#ifdef __EMSCRIPTEN__
#include <emscripten/emscripten.h>
#endif
/**
* Notes about types:
*
* 1) Based on my tests, single-precision is not enough for internal
* calculations. I'm exporting float arrays because Three.JS doesn't accept
* Float64Array's, and it also saves a lot of bandwidth.
*
* 2) I'm using a struct to store 3-vectors because they're more intuitive to
* use than arrays in C.
*
* a) You can copy structs, but not arrays.
* b) `.x`, `.y`, `.z` is easier to reason about than worrying about
* pointers and numbers, especially when I already have to deal
* with arrays of vec3's.
*
* JavaScript arrays (we're actually using `TypedArray`s, but the reasoning
* still applies) give us more abstraction and protection, making them
* friendlier than C arrays. JS can access WASM's memory buffer as a
* TypedArray for free, so any vec3 output to JS will have to be converted
* to arrays on the heap. Then our functions can output pointers to these
* arrays.
*
* Since float_vec3 has a memory layout identical to float[3], I can just
* treat one like the other using casts. That way, I can minimize copying/
* converting.
*
**/
typedef struct {
double x;
double y;
double z;
} vec3;
typedef struct {
float x;
float y;
float z;
} float_vec3;
typedef struct {
double x;
double y;
} vec2;
typedef struct {
int n_vertices;
float_vec3 *result;
} generate_field_line_t;
/*****************
* Debugging
*****************/
void print_vec3(vec3 *u) {
printf("{x=%f, y=%f, z=%f}\n", u->x, u->y, u->z);
}
void print_vec3_array(int n, vec3 *arr) {
for(int i = 0; i < n; i++) {
print_vec3(arr + i);
}
}
/*************************
* Configuration
*************************/
int N_SIG_FIGS = 6;
double nabla;
int min_resolution;
double max_error_area;
int min_average_resolution;
long iterations;
double MAX_VERTICES_PER_LINE;
int n_charges = 0;
vec3 *charges = NULL;
/***********************
* JS Interfacing
***********************/
void set_nabla(double a) {nabla = a;}
void set_max_error_area(double a) {max_error_area = a;}
void set_min_average_resolution (int a) {min_average_resolution = a;}
void set_iterations (long a) {iterations = a;}
void set_MAX_VERTICES_PER_LINE(double a) { MAX_VERTICES_PER_LINE = a; }
void set_charges (int new_n_charges, float *new_charges) {
free(charges);
n_charges = new_n_charges;
charges = (vec3 *) new_charges;
}
float_vec3 *to_float_vec3(float_vec3 *out, vec3 *in) {
out->x = in->x;
out->y = in->y;
out->z = in->z;
return out;
}
/***********************
* END JS Interfacing
***********************
* BEGIN Math functions
***********************/
vec3 *cross (vec3 *out, vec3 *u, vec3 *v) {
out->x = u->y * v->z - u->z * v->y;
out->y = u->z * v->x - u->x * v->z;
out->z = u->x * v->y - u->y * v->x;
return out;
}
vec2 *vec2_add (vec2 *out, vec2 *a, vec2 *b) {
out->x = a->x + b->x;
out->y = a->y + b->y;
return out;
}
vec3 *vec3_add (vec3 *out, vec3 *a, vec3 *b) {
out->x = a->x + b->x;
out->y = a->y + b->y;
out->z = a->z + b->z;
return out;
}
vec3 *vec3_copy (vec3 *out, vec3 *u) {
out->x = u->x;
out->y = u->y;
out->z = u->z;
return out;
}
vec3 *vec3_difference (vec3 *out, vec3 *a, vec3 *b) {
out->x = a->x - b->x;
out->y = a->y - b->y;
out->z = a->z - b->z;
return out;
}
vec2 *vec2_difference (vec2 *out, vec2 *a, vec2 *b) {
out->x = a->x - b->x;
out->y = a->y - b->y;
return out;
}
double vec2_dot (vec2 *a, vec2 *b) {
return a->x * b->x + a->y * b->y;
}
double vec3_distance (vec3 *a, vec3 *b) {
return sqrt(
pow(b->x - a->x, 2) +
pow(b->y - a->y, 2) +
pow(b->z - a->z, 2) );
}
double vec3_len (vec3 *a) {
return sqrt(
a->x * a->x +
a->y * a->y +
a->z * a->z);
}
double vec2_len (vec2 *a) {
return sqrt(
a->x * a->x +
a->y * a->y );
}
vec2 *vec2_scale(vec2 *out, vec2 *u, double k) {
out->x = u->x * k;
out->y = u->y * k;
return out;
}
vec3 *vec3_scale(vec3 *out, vec3 *u, double k) {
out->x = u->x * k;
out->y = u->y * k;
out->z = u->z * k;
return out;
}
double triangle_area(vec3 *a, vec3 *b, vec3 *c) {
// area = 1/2 * AB x AC
vec3 AB;
vec3 AC;
vec3 product;
vec3_difference(&AB, b, a);
vec3_difference(&AC, c, a);
cross(&product, &AB, &AC);
return vec3_len(&product) / 2;
}
inline double small_fast_len2(vec3 *u) { return fabs(u->x) + fabs(u->y); }
/********************
* Electric stuff
********************/
vec2 find_field(vec2 *position) {
assert(n_charges > 0);
vec2 direction;
vec2 field_i = {0,0};
vec2 field_output = {0,0};
for(int i = 0; i<n_charges; i++) {
vec2_difference(&direction, position, (vec2*) &charges[i]);
double distance = vec2_len(&direction);
vec2_scale(&field_i, &direction, -charges[i].z * pow(distance, -3));
vec2_add(&field_output, &field_output, &field_i);
}
return field_output;
}
float *generate_field_line(double r_x0, double r_y0, double g_0) {
double start_time = (double) clock() / CLOCKS_PER_SEC * 1000;
float *result = malloc(MAX_VERTICES_PER_LINE * 3 * sizeof(float));
float_vec3 *vertices = (float_vec3*)result + 1;
int n_vertices = 0;
vec2 r = {r_x0, r_y0};
double g = g_0;
vec2 delta_r = {0,0};
vertices[0] = (float_vec3) {r_x0, g_0, r_y0};
n_vertices++;
vec3 delta_pos_prev_prev = {-1,-1,-1};
vec3 delta_pos_prev = {1,1,1};
int geometry_testing_start_i = 0;
vec3 geometry_testing_start_vertex = {r_x0, g_0 * 100, r_y0};
vec3 geometry_testing_prev_vertex;
vec3 geometry_testing_current_vertex;
double geometry_testing_error_area = 0;
int i = 0;
for (; i<iterations; i++) {
vec2 field = find_field(&r);
/*vec2 mag_field = small_fast_len2(field);*/
double mag_field = vec2_len(&field);
if(mag_field > 0.5) {
if(i > geometry_testing_start_i) {
to_float_vec3(&vertices[n_vertices++], &geometry_testing_current_vertex);
}
break;
}
double mag_second_difference =
vec3_distance(&delta_pos_prev, &delta_pos_prev_prev) || 1.0;
double mag_delta_pos_prev = vec3_len(&delta_pos_prev);
double factor = pow(mag_delta_pos_prev / mag_second_difference, 1/2);
vec2_scale
( &delta_r
, &field, -nabla * factor) ;
vec2_add
( &r
, &r, &delta_r);
double delta_g = vec2_dot(&field, &delta_r);
g += delta_g;
vec3_copy(&delta_pos_prev_prev, &delta_pos_prev);
delta_pos_prev.x = delta_r.x;
delta_pos_prev.y = delta_r.y;
delta_pos_prev.z = delta_g;
geometry_testing_current_vertex.x = r.x;
geometry_testing_current_vertex.y = g * 100;
geometry_testing_current_vertex.z = r.y;
// aha! this can be done separately from the top! Need to get some
// actual data on this
if(i - geometry_testing_start_i > min_resolution) {
geometry_testing_error_area += triangle_area(
&geometry_testing_start_vertex,
&geometry_testing_prev_vertex,
&geometry_testing_current_vertex);
if(geometry_testing_error_area > max_error_area) {
to_float_vec3(&vertices[n_vertices++], &geometry_testing_prev_vertex);
vec3_copy(&geometry_testing_start_vertex, &geometry_testing_prev_vertex);
geometry_testing_start_i = i - 1;
geometry_testing_error_area = 0;
}
}
vec3_copy(&geometry_testing_prev_vertex, &geometry_testing_current_vertex);
}
double end_time = (double) clock() / CLOCKS_PER_SEC * 1000;
double time_ms = end_time - start_time;
printf("c Finished line w/ %9i iter (rtm=${%e}), ", i, (double) i/iterations);
printf("%4i vert, ", n_vertices);
printf("(rtm=%e), ", n_vertices / MAX_VERTICES_PER_LINE);
printf("in %li ms (%e ns / vert).\n",
lround(time_ms), time_ms * 10e6 / n_vertices);
result[0] = n_vertices;
result[1] = i;
result[2] = time_ms;
return realloc(result, 3 * sizeof(float) * (n_vertices + 1));
}
/*************************
* End electric stuff
*************************/
/*********************************
* Extremely Incomplete Test code
*********************************/
vec3 f(double t) {
return (vec3) { t, t*t*t, t*t };
}
double area(int n, double start, double end) {
assert(n > 2);
vec3 points[n];
for(int i = 0; i<n; i++) {
double t = start + (end - start) * i / n;
points[i] = f(t);
}
double area = 0;
for(int i = 0; i<n; i++) {
vec3 *a = points + i;
vec3 *b = points + ((i + 1) % n);
vec3 *c = points + ((i + 2) % n);
area += triangle_area(a, b, c);
}
return area;
}
/*****************
* End Test Code
*****************/
int main () {
float *ptr = generate_field_line(-100, -5, 0);
free(ptr);
ptr = NULL;
}